Алгебраические неравенства.
Линейными (строгими и нестрогими) называются неравенства вида
ax + b > 0, ax + b < 0 (ax + b>=0, ax + b<=0)
Квадратными (строгими и нестрогими) называются неравенства вида
ax2 + bx + c > 0, ax2 + bx + c < 0,
ax2 + bx + c >= 0, ax2 + bx + c <= 0, где a, b, c – некоторые действительные числа и а ≠ 0.
Квадратное неравенство ax2 + bx + c > 0 в зависимости от значения своих коэффициентов a, b и c имеет решения:
при а > 0 и D = b2 – 4ac ≠0 , то х принадлежит интервалу
при а > 0 и D < 0 x – любое действительное число;
при а < 0 и D ≠0 x(( –х1 ; ;х1 ) );
при а < 0 и D < 0 x = ( (т. е. решении нет ).
Решение неравенства ax2 + bx + c < 0 сводится к решению рассмотренного неравенства, если обе части неравенства умножить на (–1).
Метод интервалов.(основной метод)
Пусть Рn(x) – многочлен n–й степени с действительными коэффициентами, а c1, c2, … , ci ( все действительные корни многочлена с кратностями k1, k2, … , ki соответственно, причем с1 > c2 > …> ci. Многочлен Pn(x) можно представить в виде Рn(x) = (x – c1) k1(x – c2) k2 ( (x – ci)ki Qm(x), (3) где многочлен Qm(x) действительных корней не имеет и либо положителен, либо отрицателен при всех х(R. Положим для определенности, что Qm(x) > 0. Тогда при х > c1 все сомножители в разложении (3) положительны и Рn(х) > 0. Если с1 ( корень нечетной кратности (k1 ( нечетное), то при х((с2; с1) все сомножители в разложении (3), за исключением первого, положительны и Рn(х)<0. В этом случае говорят, что многочлен Рn(х) меняет знак при переходе через корень с1. Если же с1 ( корень четной кратности (k1 (четное), то все сомножители (в том числе и первый) при х((с2; с1) положительны и, следовательно, Рn(х) > 0 при х((c2; с1). В этом случае говорят, что многочлен Рn(х) не меняет знак при переходе через корень с1.
Аналогичным способом, используя разложение (3), нетрудно убедится, что при переходе через корень с2 многочлен Рn(х) меняет знак, если k2 (нечетное), и не меняет знака, если k2 (четное). Рассмотренное свойство многочленов используется для решения неравенств методом интервалов. Для того чтобы найти все решения Рn(х) > 0, (4) достаточно знать все действительные корни многочлена Рn(х) их кратности и знак многочлена Рn(х) в произвольно выбранной точке, не совпадающей с корнем многочлена.
Дробно–рациональные неравенства.
Решение рационального неравенства Pn(x)/Qn(x) > 0 (5) где Рn(х) и Qm(х) (многочлены, сводится к решению эквивалентного неравенства (4) следующим образом: умножив обе части неравенства (5) на многочлен [Qm(x)]2, который положителен при всех допустимых значениях неизвестного х (т.е. при тех х, при которых Qm(x) ( 0), получим неравенство Рn(х) ( Qm(x) > 0, эквивалентное неравенству (5).
ГРАФИЧЕСКОЕ РЕШЕНИЕ НЕРАВЕНСТВ
Неравенства с одной или двумя переменными можно решать графически.
Неравенство с одной переменой можно записать так: f(x) > g(x), где f(x) и g(x) – выражения, содержащие переменную.
Построим в одной системе координат графики функций y = f(x) и у = g(x).
Решение неравенства есть множество значений переменой х, при которых график функций у=g(x), так как f(x)>g(x).Это показано на рисунках 1 и 2.
Решение неравенства с двумя переменными f(x,y)>0 есть множество точек плоскости, координаты которых удовлетворяют этому неравенству. Рассмотрим на примерах решение некоторых неравенств с двумя переменными.
Пример 1. Решить графически неравенство x + у > 0. Решение. Запишем неравенство в виде у> –х. Построим прямую у= –х. Координаты точек плоскости, которые лежат выше этой прямой, есть решение неравенства ( на рисунке 3 – заштрихованная область).
- 1. Рациональные уравнения и методы их решения
- Методы их решения
- 1. Использование области определения уравнения.
- 2. Разложение на множители.
- 3. Замена переменной.
- Функциональные методы
- 4. Использование ограниченности функций.
- 5. Использование монотонности функций.
- 2. Рациональные неравенства и методы их решения
- Алгебраические неравенства.
- 3. Модуль числа. Решение уравнений, содержащих переменную под знаком модуля
- Основные свойства модуля:
- I тип уравнений
- II тип уравнений
- III тип уравнений
- IV тип уравнений
- V тип уравнений
- VI тип уравнений
- 4. Модуль числа. Решение неравенств, содержащих переменную под знаком модуля
- 1 Способ. Использование геометрического смысла модуля.
- 2 Способ. Использование свойства модулей: модули противоположных чисел равны.
- 3 Способ: Использование определение модуля числа.
- 4 Способ: Решение неравенства на интервалах
- 5.Уравнения. Равносильные уравнения. Уравнения–следствия. Теоремы о равносильных преобразованиях уравнений
- Преобразования, приводящие к равносильному уравнению
- Теоремы о равносильных преобразованиях уравнений
- 6. Неравенства. Равносильные неравенства. Неравенства-следствия. Теоремы о равносильных преобразованиях неравенств
- 7. Системы и совокупности уравнений. Основные методы решения систем уравнений
- Системы и совокупности уравнений
- 8. Системы и совокупности неравенств
- Основные методы решения систем двух неравенств с двумя неизвестными
- 9. Иррациональные уравнения. Основные методы решения иррациональных уравнений
- 10. Иррациональные неравенства. Основные методы решения иррациональных неравенств
- 11. Показательные уравнения. Основные методы решения показательных уравнений
- 12. Показательные неравенства. Основные методы решения показательных неравенств.
- 13. Логарифмические уравнения. Основные методы решения логарифмических уравнений
- 14 . Логарифмические неравенства. Основные методы решения логарифмических неравенств
- 15. Основные методы решения тригонометрических уравнений
- 16. Основные методы решения тригонометрических неравенств
- 17 . Уравнение с параметрами. Решение линейных уравнений с параметрами.
- 18. Уравнения с параметрами. Решение квадратных уравнений с параметрами
- 19. Методы решения уравнения . Методы решения неравенства
- 20. Обобщающий метод интервалов для решения неравенств
- 21. Основные тригонометрические функции, их свойства, графики
- 22. Обратные тригонометрические функции, графики, свойства
- 1. Метрические соотношения в окружности. Свойства хорд. Свойства секущих и касательных к окружности. Измерение углов, связанных с окружностью
- Свойства хорд
- 2. Окружность, вписанная в треугольник. Формулы, связывающие элементы треугольника с радиусом вписанной окружности
- 3. Окружность, описанная около треугольника. Формулы, связывающие элементы треугольника с радиусом описанной окружности
- 4. Прямая Эйлера
- 5. Окружность Эйлера
- 6. Вневписанная окружность.
- 7. Центроид треугольника
- 8. Ортоцентр треугольника. Ортотреугольник. Свойства ортоцентра треугольника
- 9. Вписанные четырехугольники. Вписанные многоугольники
- 10. Описанные четырехугольники. Описанные многоугольники
- 11. Теорема Пифагора. Обобщенная теорема Пифагора.
- 12. Теорема Пифагора для четырехугольников.
- 13. Теорема Птолемея.
- 14. Методы геометрических преобразований. Симметрия. Поворот. Параллельный перенос. Подобие. Гомотетия.
- 15. Метод площадей.
- 1.Свойства параллельного проектирования. Изображение плоских фигур. Требования к проекционным чертежам.
- 2. Свойства параллельного проектирования. Изображение многоугольников и тел вращения. Теорема Польке-Шварца.
- 3.Методы построения сечений многогранников.
- 4.Взаимное расположение прямых в пространстве. Скрещивающиеся прямые. Признак скрещивающихся прямых. Угол между скрещивающимися прямыми. Расстояние между скрещивающимися прямыми.
- Взаимное расположение прямой и плоскости в пространстве. Угол между прямой и плоскостью.
- Взаимное расположение плоскостей в пространстве. Угол между плоскостями. Двугранный угол. Измерение двугранных углов.
- Взаимное расположение плоскостей в пространстве. Многогранный угол. Трехгранный угол. Их свойства.