21. Основные тригонометрические функции, их свойства, графики
Синус
Синусом числа а называется ордината точки, изображающей это число на числовой окружности. Синусом угла в а радиан называется синус числа а. Синус - функция числа x. Ее область определения - множество всех чисел, так как у любого числа можно найти ординату изображающей его точки.
Область значений синуса - отрезок от -1 до 1, так как любое число этого отрезка на оси ординат является проекцией какой-либо точки окружности, но никакая точка вне этого отрезка не является проекцией какой-либо из этих точек. Период синуса равен . Ведь через каждые положение точки, изображающей число, в точности повторяется.
Знак синуса: синус равен нулю при , где n - любое целое число;
синус положителен при , где n - любое целое число;
синус отрицателен при , где n - любое целое число.
Синус - функция нечетная. Во-первых, область определения этой функции есть множество всех чисел, а значит, симметрична относительно начала отсчета. А во-вторых, если отложить от начала два противоположных числа: x и -x, то их ординаты - синусы - окажутся также противоположными. То есть для любого x.
Синус возрастает на отрезках , где n - любое целое число.
Cинус убывает на отрезке , где n - любое целое число.
при ; при .
Косинус
Косинусом числа а называется абсцисса точки, изображающей это число на числовой окружности. Косинусом угла в а радиан называется косинус числа а. Косинус - функция числа. Ее область определения - множество всех чисел, так как у любого числа можно найти ординату изображающей его точки. Область значений косинуса - отрезок от -1 до 1, так как любое число этого отрезка на оси абсцисс является проекцией какой-либо точки окружности, но никакая точка вне этого отрезка не является проекцией какой-либо из этих точек. Период косинуса равен . Ведь через каждые положение точки, изображающей число, в точности повторяется.
Знак косинуса:
косинус равен нулю при , где n - любое целое число;
косинус положителен при , где n - любое целое число;
косинус отрицателен при , где n - любое целое число.
Косинус - функция четная. Во-первых, область определения этой функции есть множество всех чисел, а значит, симметрична относительно начала отсчета. А во-вторых, если отложить от начала два противоположных числа: x и -x, то их абсциссы - косинусы - окажутся равными. То есть
для любого x.
Косинус возрастает на отрезках , где n - любое целое число.
Косинус убывает на отрезках , где n - любое целое число.
при ; при .
Тангенс
Тангенсом числа называется отношение синуса этого числа к косинусу этого числа: .
Тангенсом угла в а радиан называется тангенс числа а. Тангенс - функция числа. Ее область определения - множество всех чисел, у которых косинус не равен нулю, так как никаких других ограничений в определении тангенса нет. И так как косинус равен нулю при , то , где .
Область значений тангенса - множество всех действительных чисел.
Период тангенса равен . Ведь если взять любые два допустимые значения x (не равные ), отличающиеся друг от друга на , и провести через них прямую, то эта прямая пройдет через начало координат и пересечет линию тангенсов в некоторой точке t. Вот и получится, что , то есть число является периодом тангенса. Знак тангенса: тангенс - отношение синуса к косинусу. Значит, он равен нулю, когда синус равен нулю, то есть при , где n - любое целое число.
положителен, когда синус и косинус имеют одинаковые знаки. Это бывает только в первой и в третьей четвертях, то есть при , где а - любое целое число.
отрицателен, когда синус и косинус имеют разные знаки. Это бывает только во второй и в четвертой четвертях, то есть при , где а - любое целое число.
Тангенс - функция нечетная. Во-первых, область определения этой функции симметрична относительно начала отсчета. А во-вторых, . В силу нечетности синуса и четности косинуса, числитель полученной дроби равен , а ее знаменатель равен , а значит, сама эта дробь равна . Вот и получилось, что .
Значит, тангенс возрастает на каждом участке своей области определения, то есть на всех интервалах вида , где а - любое целое число.
Котангенс
Котангенсом числа называется отношение косинуса этого числа к синусу этого числа: . Котангенсом угла в а радиан называется котангенс числа а. Котангенс - функция числа. Ее область определения - множество всех чисел, у которых синус не равен нулю, так как никаких других ограничений в определении котангенса нет. И так как синус равен нулю при , то , где Область значений котангенса - множество всех действительных чисел.
Период котангенса равен периоду тангенса. Ведь если взять любые два допустимые значения x (не равные ), отличающиеся друг от друга на период тангенса, и провести через них прямую, то эта прямая пройдет через начало координат и пересечет линию котангенсов в некоторой точке t. Вот и получится, что , то есть, что число является периодом котангенса.
Знак котангенса: котангенс - отношение косинуса к синусу. Значит, он
равен нулю, когда косинус равен нулю, то есть при .
положителен, когда синус и косинус имеют одинаковые знаки. Это бывает только в первой и в третьей четвертях, то есть при .
отрицателен, когда синус и косинус имеют разные знаки. Это бывает только во второй и в четвертой четвертях, то есть при .
Котангенс - функция нечетная. Во-первых, область определения этой функции симметрична относительно начала отсчета. А во-вторых, .
В силу нечетности синуса и четности косинуса, числитель полученной дроби равен , а ее знаменатель равен , а значит, сама эта дробь равна .
Вот и получилось, что . Котангенс убывает на каждом участке своей области определения, то есть на всех интервалах вида .
- 1. Рациональные уравнения и методы их решения
- Методы их решения
- 1. Использование области определения уравнения.
- 2. Разложение на множители.
- 3. Замена переменной.
- Функциональные методы
- 4. Использование ограниченности функций.
- 5. Использование монотонности функций.
- 2. Рациональные неравенства и методы их решения
- Алгебраические неравенства.
- 3. Модуль числа. Решение уравнений, содержащих переменную под знаком модуля
- Основные свойства модуля:
- I тип уравнений
- II тип уравнений
- III тип уравнений
- IV тип уравнений
- V тип уравнений
- VI тип уравнений
- 4. Модуль числа. Решение неравенств, содержащих переменную под знаком модуля
- 1 Способ. Использование геометрического смысла модуля.
- 2 Способ. Использование свойства модулей: модули противоположных чисел равны.
- 3 Способ: Использование определение модуля числа.
- 4 Способ: Решение неравенства на интервалах
- 5.Уравнения. Равносильные уравнения. Уравнения–следствия. Теоремы о равносильных преобразованиях уравнений
- Преобразования, приводящие к равносильному уравнению
- Теоремы о равносильных преобразованиях уравнений
- 6. Неравенства. Равносильные неравенства. Неравенства-следствия. Теоремы о равносильных преобразованиях неравенств
- 7. Системы и совокупности уравнений. Основные методы решения систем уравнений
- Системы и совокупности уравнений
- 8. Системы и совокупности неравенств
- Основные методы решения систем двух неравенств с двумя неизвестными
- 9. Иррациональные уравнения. Основные методы решения иррациональных уравнений
- 10. Иррациональные неравенства. Основные методы решения иррациональных неравенств
- 11. Показательные уравнения. Основные методы решения показательных уравнений
- 12. Показательные неравенства. Основные методы решения показательных неравенств.
- 13. Логарифмические уравнения. Основные методы решения логарифмических уравнений
- 14 . Логарифмические неравенства. Основные методы решения логарифмических неравенств
- 15. Основные методы решения тригонометрических уравнений
- 16. Основные методы решения тригонометрических неравенств
- 17 . Уравнение с параметрами. Решение линейных уравнений с параметрами.
- 18. Уравнения с параметрами. Решение квадратных уравнений с параметрами
- 19. Методы решения уравнения . Методы решения неравенства
- 20. Обобщающий метод интервалов для решения неравенств
- 21. Основные тригонометрические функции, их свойства, графики
- 22. Обратные тригонометрические функции, графики, свойства
- 1. Метрические соотношения в окружности. Свойства хорд. Свойства секущих и касательных к окружности. Измерение углов, связанных с окружностью
- Свойства хорд
- 2. Окружность, вписанная в треугольник. Формулы, связывающие элементы треугольника с радиусом вписанной окружности
- 3. Окружность, описанная около треугольника. Формулы, связывающие элементы треугольника с радиусом описанной окружности
- 4. Прямая Эйлера
- 5. Окружность Эйлера
- 6. Вневписанная окружность.
- 7. Центроид треугольника
- 8. Ортоцентр треугольника. Ортотреугольник. Свойства ортоцентра треугольника
- 9. Вписанные четырехугольники. Вписанные многоугольники
- 10. Описанные четырехугольники. Описанные многоугольники
- 11. Теорема Пифагора. Обобщенная теорема Пифагора.
- 12. Теорема Пифагора для четырехугольников.
- 13. Теорема Птолемея.
- 14. Методы геометрических преобразований. Симметрия. Поворот. Параллельный перенос. Подобие. Гомотетия.
- 15. Метод площадей.
- 1.Свойства параллельного проектирования. Изображение плоских фигур. Требования к проекционным чертежам.
- 2. Свойства параллельного проектирования. Изображение многоугольников и тел вращения. Теорема Польке-Шварца.
- 3.Методы построения сечений многогранников.
- 4.Взаимное расположение прямых в пространстве. Скрещивающиеся прямые. Признак скрещивающихся прямых. Угол между скрещивающимися прямыми. Расстояние между скрещивающимися прямыми.
- Взаимное расположение прямой и плоскости в пространстве. Угол между прямой и плоскостью.
- Взаимное расположение плоскостей в пространстве. Угол между плоскостями. Двугранный угол. Измерение двугранных углов.
- Взаимное расположение плоскостей в пространстве. Многогранный угол. Трехгранный угол. Их свойства.