logo
PRZ_-_shpory

1. Рациональные уравнения и методы их решения

Уравнение – это математическое утверждение, записываемое в виде равенства двух буквенных выражений с переменными, которое истинно при одних значениях переменных и ложно при других их значениях.

Решить уравнение – значит найти все значения переменных, при которых это утверждение превращается в верное числовое равенство, или доказать, что таких значений не существует.

Уравнением с одним неизвестным называется равенство

(где заданные функции), в котором требуется найти все значения , при которых данное равенство является верным. Функция называется левой частью, а – правой частью уравнения. В частности, может быть .

Областью определения уравнения называется множество всех значений переменной , при которых одновременно имеют смысл и левая, и правая части уравнения. Область определения уравнения определяется пересечением областей определения функций и .

Корнем (или решением) уравнения называется всякое число , при подстановке которого в уравнение получается верное числовое равенство . Уравнение может иметь один, два, три и большее число корней, а также бесконечное их множество или не иметь корней вовсе.

Замечание. Решение уравнения считается правильным только в том случае, если найдены все корни уравнения и в процессе решения убедительно доказано, что множество корней именно такое, как указанно в ответе. В частности, метод «угадывания» корней считается правильным, если доказано, что других корней нет.

Уравнение вида P(x) = 0, где P(x) — целая рациональная функция,

называется целым рациональным уравнением.

Решение рационального уравнения P (x) / Q (x) = 0, где P (x) и Q (x)

— многочлены, сводится к решению уравнения P (x) = 0 и

проверке того, что корни удовлетворяют условию Q (x) не= 0.

При решении рациональных уравнений необходимо помнить следующие сведения из алгебры:

1)х=а – корень многочлена Р(х)=0, то Р(х) делится на (х–а) без остатка

2)пусть все коэффициенты многочлена Р(х) – целые числа и старший коэффициент равен1. Если такой многочлен имеет своим корнем рациональное число, то это число целое.

Рациональные уравнения – целые(все преобразования выполняются на области определения уравнения, поэтому получаются равносильные уравнения и проверку не делают);

дробно–рациональные(при решении дробно–рациональных уравнений Р(х)/Q(x)=0 выполняется умножение на Q(x), что может привести к появлению посторонних корней, поэтому проверку делать необходимо.