2. Свойства параллельного проектирования. Изображение многоугольников и тел вращения. Теорема Польке-Шварца.
Допустим, что в пространстве задана произвольная плоскость α и пересекающая ее прямая a. Выберем в пространстве произвольную точку M и проведем через нее прямую b, параллельную a. Точка пересечения M1 прямой b с плоскостью a называется параллельной проекцией точки M на эту плоскость. Плоскость α называется плоскостью проектирования, а прямая a – направлением проектирования. Пусть в пространстве задана некоторая фигура K. Отображение, ставящее в соответствие каждой точке M фигуры K ее параллельную проекцию – точку M1 на плоскость α в направлении a, называется параллельным проектированием (на плоскость α в направлении a). Множество точек M1 называется параллельной проекцией фигуры K на плоскость α в направлении a. Параллельное проектирование применяется для изображения пространственных фигур на плоскости и обладает следующими свойствами (здесь мы предполагаем, что направление проектирования не параллельно рассматриваемым отрезкам и прямым; в противном случае проекцией будет являться точка).
Проекцией прямой является прямая, проекция отрезка есть отрезок.
Две параллельные прямые проектируются либо в две параллельные прямые, либо в одну и ту же прямую. Проекции параллельных отрезков лежат либо на параллельных прямых, либо на одной прямой.
Длины проекций параллельных отрезков, а также длины проекций отрезков, лежащих на одной прямой, пропорциональны длинам самих этих отрезков.
Изображением данного треугольника может служить любой треугольник.
Для изображения плоского многоугольника выделяют в нем вершины A1, A2, A3. Затем строят изображение треугольника A1A2A3 в виде произвольного треугольника. Изображение остальных вершин многоугольника строится однозначно с использованием свойств параллельного проектирования.
Из приведенного утверждения следует, что изображением данного треугольника может служить треугольник, подобный любому треугольнику. В частности, любой треугольник можно спроектировать в правильный треугольник, то есть правильный треугольник может служить проекцией любого треугольника.
При изображении многогранников полезно следующее утверждение.
Теорема 4.1. Теорема Польке – Шварца. Изображением данного тетраэдра может служить любой четырехугольник с проведенными в нем диагоналями (не обязательно выпуклый).
Для изображения многогранника выделяют в нем четыре вершины A1, A2, A3, A4. Затем строят изображение тетраэдра A1A2A3A4 в виде произвольного четырехугольника с проведенными в нем диагоналями. Изображение остальных вершин многогранника строится однозначно с использованием свойств параллельного проектирования
- 1. Рациональные уравнения и методы их решения
- Методы их решения
- 1. Использование области определения уравнения.
- 2. Разложение на множители.
- 3. Замена переменной.
- Функциональные методы
- 4. Использование ограниченности функций.
- 5. Использование монотонности функций.
- 2. Рациональные неравенства и методы их решения
- Алгебраические неравенства.
- 3. Модуль числа. Решение уравнений, содержащих переменную под знаком модуля
- Основные свойства модуля:
- I тип уравнений
- II тип уравнений
- III тип уравнений
- IV тип уравнений
- V тип уравнений
- VI тип уравнений
- 4. Модуль числа. Решение неравенств, содержащих переменную под знаком модуля
- 1 Способ. Использование геометрического смысла модуля.
- 2 Способ. Использование свойства модулей: модули противоположных чисел равны.
- 3 Способ: Использование определение модуля числа.
- 4 Способ: Решение неравенства на интервалах
- 5.Уравнения. Равносильные уравнения. Уравнения–следствия. Теоремы о равносильных преобразованиях уравнений
- Преобразования, приводящие к равносильному уравнению
- Теоремы о равносильных преобразованиях уравнений
- 6. Неравенства. Равносильные неравенства. Неравенства-следствия. Теоремы о равносильных преобразованиях неравенств
- 7. Системы и совокупности уравнений. Основные методы решения систем уравнений
- Системы и совокупности уравнений
- 8. Системы и совокупности неравенств
- Основные методы решения систем двух неравенств с двумя неизвестными
- 9. Иррациональные уравнения. Основные методы решения иррациональных уравнений
- 10. Иррациональные неравенства. Основные методы решения иррациональных неравенств
- 11. Показательные уравнения. Основные методы решения показательных уравнений
- 12. Показательные неравенства. Основные методы решения показательных неравенств.
- 13. Логарифмические уравнения. Основные методы решения логарифмических уравнений
- 14 . Логарифмические неравенства. Основные методы решения логарифмических неравенств
- 15. Основные методы решения тригонометрических уравнений
- 16. Основные методы решения тригонометрических неравенств
- 17 . Уравнение с параметрами. Решение линейных уравнений с параметрами.
- 18. Уравнения с параметрами. Решение квадратных уравнений с параметрами
- 19. Методы решения уравнения . Методы решения неравенства
- 20. Обобщающий метод интервалов для решения неравенств
- 21. Основные тригонометрические функции, их свойства, графики
- 22. Обратные тригонометрические функции, графики, свойства
- 1. Метрические соотношения в окружности. Свойства хорд. Свойства секущих и касательных к окружности. Измерение углов, связанных с окружностью
- Свойства хорд
- 2. Окружность, вписанная в треугольник. Формулы, связывающие элементы треугольника с радиусом вписанной окружности
- 3. Окружность, описанная около треугольника. Формулы, связывающие элементы треугольника с радиусом описанной окружности
- 4. Прямая Эйлера
- 5. Окружность Эйлера
- 6. Вневписанная окружность.
- 7. Центроид треугольника
- 8. Ортоцентр треугольника. Ортотреугольник. Свойства ортоцентра треугольника
- 9. Вписанные четырехугольники. Вписанные многоугольники
- 10. Описанные четырехугольники. Описанные многоугольники
- 11. Теорема Пифагора. Обобщенная теорема Пифагора.
- 12. Теорема Пифагора для четырехугольников.
- 13. Теорема Птолемея.
- 14. Методы геометрических преобразований. Симметрия. Поворот. Параллельный перенос. Подобие. Гомотетия.
- 15. Метод площадей.
- 1.Свойства параллельного проектирования. Изображение плоских фигур. Требования к проекционным чертежам.
- 2. Свойства параллельного проектирования. Изображение многоугольников и тел вращения. Теорема Польке-Шварца.
- 3.Методы построения сечений многогранников.
- 4.Взаимное расположение прямых в пространстве. Скрещивающиеся прямые. Признак скрещивающихся прямых. Угол между скрещивающимися прямыми. Расстояние между скрещивающимися прямыми.
- Взаимное расположение прямой и плоскости в пространстве. Угол между прямой и плоскостью.
- Взаимное расположение плоскостей в пространстве. Угол между плоскостями. Двугранный угол. Измерение двугранных углов.
- Взаимное расположение плоскостей в пространстве. Многогранный угол. Трехгранный угол. Их свойства.