16. Основные методы решения тригонометрических неравенств
К простейшим тригонометрическим неравенствам относятся неравенства:
(1)
(2)
Для решения таких неравенств можно использовать, в частности, единичную окружность (рис. 1 – 4). Строят «граничные углы», соответствующие равенству в заданном неравенстве (т.е. в случае замены знаков неравенства на знак равенства). Исходя из смысла неравенства определяют множество углов, которые являются решением (если такие имеются). Для строгих неравенств (1) (соотв . рис. 1 – 4) решения приведены в таблице.
Решение простейших тригонометрических неравенств. С помощью единичной окружности нетрудно получить множества решений простейших тригонометрических неравенств.
Рис.1 Рис. 2
Неравенства | Множества решений неравенств (kZ) |
| |
| |
tgx > a
tgx < a | |
|
Рис. 3
Более сложные тригонометр. неравенства решаются сведением к простейшим (если это возможно).
Если решают нестрогие неравенства, то в соответствующие промежутки, указанные во множестве решений (см. таблицу) включают граничные точки. При этом следует учитывать, что для неравенств, содержащих и не включаются концы промежутка, которые не входят в ОДЗ этих функций. Если задано тригонометрическое неравенство, которое не является простейшим, то его решают вначале в зависимости от типа (в частности, разложением на множители, заменой переменной), а затем решают полученные простейшие неравенства.
Метод интервалов при решении тригонометрических неравенств
Пример. Решить неравенство .
Решение. Рассмотрим функцию . Она определена и непрерывна на множестве всех действительных чисел. Функции и имеют периоды и соответственно. Следовательно, период равен . Найдем нули функции:
; , откуда
Выберем промежуток , длина которого равна периоду . Нетрудно заметить, что его концы являются нулями функции (можно было выбрать любой промежуток длины , но сделанный выбор позволит записать ответ в более компактном виде).
Найдем решения исходного неравенства на выбранном интервале. Для этого отметим на промежутке нули функции и определим знак на каждом из получившихся интервалов. Функция принимает положительные значения на интервалах .
Ответ:
Доказательство тригонометрических неравенств
При доказательстве тригонометрических неравенств применяют те же методы, что и при доказательстве алгебраических неравенств (вопросы 18,19). Однако, если в процессе доказательства тригонометрических неравенств используется синтетический метод, то в качестве опорных часто берутся следующие неравенства:
, , , где . Иногда в качестве опорных используют неравенства, вытекающие из монотонности тригонометрических функций. Так, в интервале функции и возрастают, а функции и убывают. Поэтому если , то , , , . Аналогичные неравенства можно получить и для других промежутков монотонности тригонометрических функций.
- 1. Рациональные уравнения и методы их решения
- Методы их решения
- 1. Использование области определения уравнения.
- 2. Разложение на множители.
- 3. Замена переменной.
- Функциональные методы
- 4. Использование ограниченности функций.
- 5. Использование монотонности функций.
- 2. Рациональные неравенства и методы их решения
- Алгебраические неравенства.
- 3. Модуль числа. Решение уравнений, содержащих переменную под знаком модуля
- Основные свойства модуля:
- I тип уравнений
- II тип уравнений
- III тип уравнений
- IV тип уравнений
- V тип уравнений
- VI тип уравнений
- 4. Модуль числа. Решение неравенств, содержащих переменную под знаком модуля
- 1 Способ. Использование геометрического смысла модуля.
- 2 Способ. Использование свойства модулей: модули противоположных чисел равны.
- 3 Способ: Использование определение модуля числа.
- 4 Способ: Решение неравенства на интервалах
- 5.Уравнения. Равносильные уравнения. Уравнения–следствия. Теоремы о равносильных преобразованиях уравнений
- Преобразования, приводящие к равносильному уравнению
- Теоремы о равносильных преобразованиях уравнений
- 6. Неравенства. Равносильные неравенства. Неравенства-следствия. Теоремы о равносильных преобразованиях неравенств
- 7. Системы и совокупности уравнений. Основные методы решения систем уравнений
- Системы и совокупности уравнений
- 8. Системы и совокупности неравенств
- Основные методы решения систем двух неравенств с двумя неизвестными
- 9. Иррациональные уравнения. Основные методы решения иррациональных уравнений
- 10. Иррациональные неравенства. Основные методы решения иррациональных неравенств
- 11. Показательные уравнения. Основные методы решения показательных уравнений
- 12. Показательные неравенства. Основные методы решения показательных неравенств.
- 13. Логарифмические уравнения. Основные методы решения логарифмических уравнений
- 14 . Логарифмические неравенства. Основные методы решения логарифмических неравенств
- 15. Основные методы решения тригонометрических уравнений
- 16. Основные методы решения тригонометрических неравенств
- 17 . Уравнение с параметрами. Решение линейных уравнений с параметрами.
- 18. Уравнения с параметрами. Решение квадратных уравнений с параметрами
- 19. Методы решения уравнения . Методы решения неравенства
- 20. Обобщающий метод интервалов для решения неравенств
- 21. Основные тригонометрические функции, их свойства, графики
- 22. Обратные тригонометрические функции, графики, свойства
- 1. Метрические соотношения в окружности. Свойства хорд. Свойства секущих и касательных к окружности. Измерение углов, связанных с окружностью
- Свойства хорд
- 2. Окружность, вписанная в треугольник. Формулы, связывающие элементы треугольника с радиусом вписанной окружности
- 3. Окружность, описанная около треугольника. Формулы, связывающие элементы треугольника с радиусом описанной окружности
- 4. Прямая Эйлера
- 5. Окружность Эйлера
- 6. Вневписанная окружность.
- 7. Центроид треугольника
- 8. Ортоцентр треугольника. Ортотреугольник. Свойства ортоцентра треугольника
- 9. Вписанные четырехугольники. Вписанные многоугольники
- 10. Описанные четырехугольники. Описанные многоугольники
- 11. Теорема Пифагора. Обобщенная теорема Пифагора.
- 12. Теорема Пифагора для четырехугольников.
- 13. Теорема Птолемея.
- 14. Методы геометрических преобразований. Симметрия. Поворот. Параллельный перенос. Подобие. Гомотетия.
- 15. Метод площадей.
- 1.Свойства параллельного проектирования. Изображение плоских фигур. Требования к проекционным чертежам.
- 2. Свойства параллельного проектирования. Изображение многоугольников и тел вращения. Теорема Польке-Шварца.
- 3.Методы построения сечений многогранников.
- 4.Взаимное расположение прямых в пространстве. Скрещивающиеся прямые. Признак скрещивающихся прямых. Угол между скрещивающимися прямыми. Расстояние между скрещивающимися прямыми.
- Взаимное расположение прямой и плоскости в пространстве. Угол между прямой и плоскостью.
- Взаимное расположение плоскостей в пространстве. Угол между плоскостями. Двугранный угол. Измерение двугранных углов.
- Взаимное расположение плоскостей в пространстве. Многогранный угол. Трехгранный угол. Их свойства.