Метод наименьших квадратов
Метод наименьших квадратов, разработанный знаменитыми математиками К. Гауссом и А. Лежандром, берет свое начало от задач геодезии и астрономии. Рассмотрим его существо на примере линейной модели. Итак, пусть для представления полученных данных мы выбрали линейную модель y*=a+bx, где х – независимая переменная, т. е., переменная, которую экспериментатор может менять по своему усмотрению; y* - зависимая переменная или отклик; a и b – коэффициенты (параметры). Из данных, приведенных в примере, видно, что именно такой моделью (уравнением прямой линии) может быть описана зависимость.
С другой стороны, видно что реально наблюдаемые значения отклика yi несколько отличаются от откликов yi*, соответствующих уравнению модели. И такое положение будет всегда, даже в тех случаях, когда зависимая и независимая переменные будут связаны строгой функциональной зависимостью. В этом случае отклонения эмпирических значений от теоретических связаны с погрешностями измерений, которые всегда имеют место.
Итак, каждому значению независимой переменной в общем случае соответствует ошибка: i=yi-yi*.
Естественно, что в зависимости от того, как будет проведена прямая, аппроксимирующая набор экспериментальных данных, величины i будут различны. Именно, для того, чтобы избежать субъективности при построении эмпирической модели, и был разработан метод наименьших квадратов, позволяющий однозначно определить параметры выбранной модели. В основе этого метода лежит критерий минимизации суммы квадратов ошибок, т. е. требование, чтобы была минимальной.
Покажем, как используется метод наименьших квадратов на примере оценки параметров для уравнения y*=a+bx.
В общем случае необходимо решить систему уравнений:
, из которых находятся коэффициенты a и b.
Подставляя данные из примера, получаем:
16,3=7a+56b
107=56a+560b
Откуда a=4, b=-0,209.
В таблице приведено сравнение между реальными и теоретическими данными, а также величины ошибок.
Y | 3,6 | 2,9 | 3,2 | 1,8 | 2,3 | 1,7 | 0,8 |
y* | 3,582 | 3,164 | 2,746 | 2,328 | 1,91 | 1,492 | 1,074 |
i | 0,018 | -0,264 | 0,454 | -0,528 | 0,39 | 0,208 | -0,274 |
Сумма i | 0,825 |
|
|
|
|
|
|
- Введение
- Раздел I. Введение в теорию вероятностей
- Понятие о случайном событии
- Классическое определение вероятности
- Относительная частота. Статистическое определение вероятности.
- Геометрическая вероятность
- Свойства вероятностей Сложение вероятностей несовместимых событий
- Умножение вероятностей
- Сложение вероятностей совместимых событий
- Формула полной вероятности
- Основные формулы комбинаторики
- Дискретные и непрерывные случайные величины. Понятие «случайные величины»
- Закон распределения случайной величины
- Теоретические распределения вероятностей
- Биномиальное распределение
- Распределение Пуассона
- Числовые характеристики дискретных случайных величин
- Нормальное распределение
- Вопросы для самопроверки:
- Раздел II. Основные понятия и термины биологической статистики Генеральная совокупность и выборка
- Непреднамеренный отбор. Метод последовательных номеров. Случайный и механический методы отбора
- Признаки и показатели
- Правила ранжирования
- Способы группировки первичных данных.
- Схемы (модели) научного исследования
- Однофакторная и многофакторная модель Контрольные и экспериментальные группы
- Метод автоконтроля
- Метод дублирования
- Метод последовательного пополнения групп
- Численность контрольных и экспериментальных групп
- Научные гипотезы
- Направленные гипотезы
- Статистические критерии
- Параметрические критерии
- Непараметрические критерии
- Уровни статистической значимости
- 1 Рода.
- Вопросы для самопроверки
- Раздел III. Статистические методы обработки экспериментальных данных
- Проверка гипотезы о законе распределения
- Χ2 Пирсона
- Описательные статистики Концепция сжатия экспериментальных данных
- Показатели центральной тенденции. Средние.
- Медиана
- Персентили
- Показатели изменчивости
- Стандартизованные данные
- Показатели асимметрии и эксцесса
- Эксцесс
- Работа с качественными переменными Количественная оценка результатов эксперимента.
- Вопросы для самопроверки:
- Сравнение двух независимых групп т критерий Стьюдента
- Критерии согласия для дисперсий
- U критерий Маана-Уитни
- Сравнение качественных признаков Критерий χ2
- Сравнение долей
- Точный тест Фишера
- Сравнение более двух независимых групп Однофакторный дисперсионный анализ Фишера
- Критерий Краскела-Уоллиса
- Сравнение двух зависимых групп Парный т критерий Стьюдента
- Парный критерий т – Вилкоксона
- Критерий x2r Фридмана
- Тест Мак-Немара
- Корреляционный анализ
- Вычисление и интерпретация параметров парной линейной корреляции
- Условия применения и ограничения корреляционно анализа
- Вычисление и интерпретация параметров парной линейной корреляции
- Измерение связи количественных признаков
- Измерение связи порядковых признаков
- Измерение связи номинальных признаков
- Относительный риск. Отношение шансов
- Статистическая оценка надежности параметров парной корреляции
- Частная корреляция
- Факторный анализ
- Вопросы для самопроверки:
- Регрессионный анализ
- Метод наименьших квадратов
- Выбор формы функциональной зависимости
- Применение парного линейного уравнения регрессии
- Корреляционно-регрессионные модели (крм) и их применение в анализе и прогнозе.
- Логистическая регрессия
- Анализ динамических изменений Применение метода наименьших квадратов при исследовании тенденции развития
- Анализ циклических изменений
- Метод обычных средних
- Метод корригирования средних
- Метод отношения фактических данных
- Ошибки, допускаемые при количественной характеристике сезонных колебаний
- Кластерный анализ
- Иерархическое дерево
- Меры расстояния
- Правила объединения или связи
- Метод k средних
- Выбор между параметрическими и непараметрическими тестами: легкая ситуация.
- Выбор между параметрическими и непараметрическими тестами: сложные случаи.
- Выбор между параметрическим и непараметрическим тестом: насколько это на самом деле влияет на результат?
- Одно или двухсторонняя p-оценка?
- Парный или непарный тест?
- Тест Фишера или хи-квадрат?
- Регрессия или корреляция?
- Вопросы для самопроверки:
- Раздел IV. Работа с программой easystatistics Общие сведения о программе EasyStatistics
- Создание новой базы данных
- Работа с файлами
- Копирование и вставка данных
- Работа с фильтрами
- Работа с переменными и строками
- Статистические методы Описательные статистики
- Частотный анализ
- Сравнение независимых выборок
- Сравнение связанных выборок
- Дисперсионный анализ
- Корреляционный анализ
- Множественная регрессия
- Проверка типа распределения эмпирических данных
- Вероятностный калькулятор
- Задания для самостоятельной работы с программой
- Список рекомендуемой литературы
- Граничные (критические) значения 2-критерия, соответствующие разным вероятностям допустимой ошибки и разным степеням свободы
- Критические значения коэффициентов корреляции для различных степеней свободы (n - 2) и разных вероятностей допустимых ошибок