logo search
Исправленный вариант математика

§ 1. Понятие производной

Пусть и - два значения аргумента, а и - соответствующие значения функции . Тогда разность называется приращением аргумента, а разность = - приращением функции на отрезке .

Производной от функции по аргументу называется предел отношения приращения функции к приращению аргумента, когда приращение аргумента стремится к нулю:

или

Примечание.

Производная обозначается также как (Читается «дэ игрек по дэ икс».) Штрихом производная обозначается только в том случае, если она берется по .

Отыскание производной называется дифференцированием функции.

Исходя из определения производной, можно найти производную любой дифференцируемой функции.

Рассмотрим несколько примеров.

1. Найти производную функции

(1)

Дадим приращение , тогда получит приращение :

,

отсюда

.

Функция задается формулой (1). Тогда

=

=

Находим отношение приращения функции к приращению аргумента:

= .

Найдем предел этого отношения при :

= ( )=

Следовательно, по определению производной

2. Найти производную функции

(2)

Находим приращение функции отсюда

= и

=

Таким образом,

Итак,

3. Найти производную функции

(3)

Находим приращение функции

Воспользуемся формулой

Отсюда

и

= .

Итак,

=

Исходя из определения производной, найти производные следующих функций:

2.1. (Ответ:  )

2.5. (Ответ: )

2.2. (Ответ: )

2.6. . (Ответ: )

2.3.

(Ответ: )

2.7. .

(Ответ: )

2.4.

Ответ: )

2.8. .

(Ответ: 6(x1))