7.1. Характер взаимосвязи между признаками
Все многообразие связей между отдельными признаками, свойствами явлений или параметрами функционирующего объекта можно разделить на две основные группы: функциональные и статистические.
Зависимость, при которой одному и тому же числовому значению первого признака EMBED Equation.3 соответствует только одно числовое значение второго признака EMBED Equation.3 , называется функциональной. Т.е. можно записать, что EMBED Equation.3 . Примером может служить закон Ома, который устанавливает прямо пропорциональную зависимости между напряжением и током.
В живой природе такая однозначная четкая взаимосвязь встречается редко. Чаще проявляется взаимосвязь, при которой одному и тому же числовому значению первого признака соответствует несколько (ряд) случайных значений другого признака. Такая взаимосвязь называется корреляционной связью (от лат. сorrelatio – соотношение, связь). Простейшим примером может служить наблюдение: при данном росте человек может иметь различный вес.
Существуют несколько видов выражения корреляционной взаимосвязи.
Если признаки выражены количественными (числовыми) характеристиками, то используют коэффициент парной и ранговой корреляции, корреляционное отношение, коэффициент множественной и частной корреляции, коэффициент множественной детерминации.
Связь между признаками, изменения которых носит качественный характер (гиперпигментация кожи, увеличенная и плотная печень и т.п.) изучают используя коэффициент качественной альтернативной корреляции (тертрахорического показателя), критерия 2, показателя сопряженности Пирсона и Чупрова и др. Имеются методы и для оценки качественно–количественной корреляции (у одного признака изменяется числовое значение, а у другого – качественный показатель (например, при стенокардии: повышение артериального давления и бледность покровов).
Yandex.RTB R-A-252273-3
- Содержание
- «Никакой достоверности нет в науках там, где нельзя приложить ни одной из математических наук, и в том, что не имеет связи с математикой»
- Глава 1 пределы
- Глава 2 дифференциальное исчисление функций одной независимой переменной
- § 1. Понятие производной
- §2. Основные правила дифференцирования.
- §3. Дифференцирование сложной функции.
- §4. Производные высших порядков
- §5. Дифференциал функции
- Тогда, воспользовавшись формулой embed Equation.3 ,
- §6. Применение производной при решении
- Решение. Скорость прямолинейного движения
- Глава 3 Исследование функций методами дифференциального исчисления
- §1. Интервалы монотонности функции
- Решение. Найдем производную заданной функции: embed Equation.3 .
- §2. Экстремум функции
- Глава 4 неопределенный интеграл4
- §1. Непосредственное интегрирование.
- Основные свойства неопределенного интеграла
- §2.Интегрирование способом подстановки
- § 3. Интегрирование по частям.
- Например:
- §4. Применение неопределенного интеграла при решении прикладных задач.
- Глава 5 определенный интеграл
- §1.Определенный интеграл и его непосредственное
- Основные свойства определенного интеграла
- §2. Приложение определенного интеграла для вычисления площадей плоских фигур.
- §3. Приложение определенного интеграла к решению физических задач.
- Глава 6 дифференциальные уравнения
- §1.Основные понятия.
- §2.Уравнения с разделяющимися переменными.
- §3. Однородные дифференциальные уравнения.
- §4. Задачи на составление дифференциальных уравнений.
- Глава 7 Элементы теории вероятностей и математической статистики
- § 1. Основные понятия
- Вероятность случайного события – это количественная оценка объективной возможности появления данного события.
- § 2. Числовые характеристики распределения случайных величин
- §4. Генеральная совокупность.
- §5. Интервальная оценка. Интервальная оценка
- §6. Проверка гипотез. Критерии значимости
- § 7. Элементы корреляционного и регрессионного анализа
- 7.1. Характер взаимосвязи между признаками
- 7.2. Проведение корреляционного анализа
- 7.3. Элементы регрессионного анализа
- Статистическая обработка данных измерения роста.
- Глава 4
- Глава 5
- Список литературы
- 614990, Г. Пермь,ул. Большевистская,85