Глава 1 пределы
Постоянная является пределом функции в точке , если их разность во всех точках, кроме , по абсолютному значению остается меньше бесконечно малого положительного числа .
Если для <, то .
Практическое вычисление пределов основывается на следующих теоремах:
Если существуют и то
(при ≠0).
Используют также следующие пределы:
- первый замечательный предел
- второй замечательный предел.
Иногда в процессе отыскания предела при замене аргумента определенным значением функция получает выражение или - неопределенность. Хотя это выражение не имеет определенного смысла, функция может иметь конечный предел при данном стремлении аргумента. Это становится очевидным, если функцию преобразовать: разложить ее на множители, или поделить на аргумент, или умножить на сопряженное выражение, и т.д.
Например:
при замене преобразовывается в неопределенность .
Раскрыть неопределенность можно, поделив все члены выражения, стоящего под знаком предела, на высшую степень аргумента, то есть на :
= .
- неопределенность.
Раскрыть данную неопределенность можно, разложив выражения, стоящие в числителе и знаменателе под знаком предела, на множители, то есть:
- неопределенность.
Умножив и поделив выражение, стоящее под знаком предела, на сопряженное выражение , получаем следующее выражение:
= .
Найти следующие пределы:
1.1. . (Ответ: 3) | 1.6. . (Ответ: 9/2) |
1.2. . (Ответ: 1000) | 1.7. . (Ответ: 1/3) |
1.3. . (Ответ: ) | 1.8. . (Ответ: ) |
1.4. . (Ответ: ) | 1.9. . (Ответ: 1) |
1.5. . (Ответ: 0) | 1.10. . (Ответ: 4) |
1.11. . (Ответ: 0) | 1.21. . (Ответ: 1/2) |
1.12. . (Ответ: 0) | 1.22 . (Ответ: 0,6) |
1.13. . (Ответ: 1/3) | 1.23. . (Ответ: 4) |
1.14. . (Ответ: 1/2) | 1.24. . (Ответ: 0) |
1.15. . (Ответ: 0) | 1.25. . (Ответ: 4) |
1.16. . (Ответ: 1/4)
| 1.26. . (Ответ: e=2,718)
|
1.17. . (Ответ: ) | 1.27. . (Ответ: 1) |
1.18. . (Ответ: 3) | 1.28. . (Ответ: e3) |
1.19. . (Ответ: 1) | 1.29. . (Ответ: 1/2) |
1.20. . (Ответ: 3) | 1.30. . (Ответ: 1/3)
|
Yandex.RTB R-A-252273-3
- Содержание
- «Никакой достоверности нет в науках там, где нельзя приложить ни одной из математических наук, и в том, что не имеет связи с математикой»
- Глава 1 пределы
- Глава 2 дифференциальное исчисление функций одной независимой переменной
- § 1. Понятие производной
- §2. Основные правила дифференцирования.
- §3. Дифференцирование сложной функции.
- §4. Производные высших порядков
- §5. Дифференциал функции
- Тогда, воспользовавшись формулой embed Equation.3 ,
- §6. Применение производной при решении
- Решение. Скорость прямолинейного движения
- Глава 3 Исследование функций методами дифференциального исчисления
- §1. Интервалы монотонности функции
- Решение. Найдем производную заданной функции: embed Equation.3 .
- §2. Экстремум функции
- Глава 4 неопределенный интеграл4
- §1. Непосредственное интегрирование.
- Основные свойства неопределенного интеграла
- §2.Интегрирование способом подстановки
- § 3. Интегрирование по частям.
- Например:
- §4. Применение неопределенного интеграла при решении прикладных задач.
- Глава 5 определенный интеграл
- §1.Определенный интеграл и его непосредственное
- Основные свойства определенного интеграла
- §2. Приложение определенного интеграла для вычисления площадей плоских фигур.
- §3. Приложение определенного интеграла к решению физических задач.
- Глава 6 дифференциальные уравнения
- §1.Основные понятия.
- §2.Уравнения с разделяющимися переменными.
- §3. Однородные дифференциальные уравнения.
- §4. Задачи на составление дифференциальных уравнений.
- Глава 7 Элементы теории вероятностей и математической статистики
- § 1. Основные понятия
- Вероятность случайного события – это количественная оценка объективной возможности появления данного события.
- § 2. Числовые характеристики распределения случайных величин
- §4. Генеральная совокупность.
- §5. Интервальная оценка. Интервальная оценка
- §6. Проверка гипотез. Критерии значимости
- § 7. Элементы корреляционного и регрессионного анализа
- 7.1. Характер взаимосвязи между признаками
- 7.2. Проведение корреляционного анализа
- 7.3. Элементы регрессионного анализа
- Статистическая обработка данных измерения роста.
- Глава 4
- Глава 5
- Список литературы
- 614990, Г. Пермь,ул. Большевистская,85