Правила ранжирования
Использование порядковой шкалы позволяет присваивать ранги объектам по какому-либо признаку. Таким образом, метрические значения переводятся в ранговые. При этом фиксируются различия в степени выраженности свойств. В процессе ранжирования следует придерживаться 2 правил.
Правило порядка ранжирования. Надо решить, кто получает первый ранг: объект с самой большей степенью выраженности какого-либо качества или наоборот. Чаще всего это абсолютно безразлично и не отражается на конечном результате. Традиционно принято первый ранг приписывать объектам с большей степенью выраженности качества (большему значению – меньший ранг). Например, чемпиону присуждают первое место, а не наоборот. Хотя, и здесь если бы был принят обратный порядок, то результаты от этого не изменились бы. Так что порядок ранжирования каждый исследователь вправе определять сам. Например, Е.В. Сидоренко рекомендует меньшему значению приписывать меньший ранг. В некоторых случаях это удобнее, но непривычнее.
Например: имеется неупорядоченная выборка, данные которой необходимо проранжировать. {2, 7, 6, 8, 11, 15, 9}. После упорядочивания выборки ранжируем ее.
Метрические данные | Ранги | Альтернативный вариант: | Метрические данные | Ранги |
15 | 1 |
| 15 | 7 |
11 | 2 |
| 11 | 6 |
9 | 3 |
| 9 | 5 |
8 | 4 |
| 8 | 4 |
7 | 5 |
| 7 | 3 |
6 | 6 |
| 6 | 2 |
2 | 7 |
| 2 | 1 |
Отдельно следует сказать следующее. Существует группа редко используемых непараметрических критериев (Т-критерий Вилкоксона, U-критерий Манна-Уитни, Q-критерий Розенбаума и др.), при работе с которыми всегда надо меньшему значению приписывать меньший ранг.
Правило связанных рангов. Объектам с одинаковой выраженностью свойств приписывается один и тот же ранг. Этот ранг представляет собой среднее значение тех рангов, которые они получили бы, если бы не были равны. Например, надо проранжировать выборку, содержащую ряд одинаковых метрических данных: {4, 5, 9, 2, 6, 5, 9, 7, 5, 12}. После упорядочивания выборки следует вычислить среднее арифметическое значение связанных рангов.
-
Метрические данные
Предварительное ранжирование
Окончательное ранжирование
12
1
1
9
2
(2+3)/2=2,5
9
3
(2+3)/2=2,5
7
4
4
6
5
5
5
6
(6+7+8)/3=7
5
7
(6+7+8)/3=7
5
8
(6+7+8)/3=7
4
9
4
2
10
2
Рассмотренная классификация признаков по шкалам измерений не исчерпывает всех мыслимых типов классификаций. Так, для применения статистических методов, оперирующих частотами распределений, более существенной может оказаться классификация по такому критерию, как непрерывность теоретической функции эмпирического распределения. Для других методов определяющим является решение вопроса о том, какому теоретическому типу распределения соответствует эмпирическое распределение либо, в более узком смысле, является ли распределение нормальным. Если же различать условия исследования того или иного явления, признаки могут подразделяться на факториальные признаки (причина) и результативные признаки (следствие). Успех применения любого метода зависит от того, насколько хорошо анализируемые данные соответствуют основным предположениям, принятым при разработке статистического метода. Методы анализа, разработанные для определенного типа признаков, могут привести к совершенно неверным выводам при их применении к признакам другого типа, поэтому нужно быть особенно внимательным при выборе метода, адекватного анализируемым данным. Тип исходных данных определяет, какими методами эти данные могут быть обработаны. Формулы нельзя применять слепо и автоматически, без рассмотрения вопроса об их пригодности в каждом данном случае.
ПОКАЗАТЕЛЬ - одно из основных понятий статистики, под которым имеется в виду обобщенная количественная характеристика явлений и процессов в их качественной определенности в условиях конкретного места и времени. Примерами конкретных показателей служат: численность населения, плодородие почв, уровень производительности труда и др.
Величина показателя определяется в результате измерения объектов (элементов) и меняется в зависимости от методологических особенностей его построения обусловленных, в свою очередь степенью охвата изучаемых процессов.
Показатели называются натуральными, когда они выражены в единицах счета или в различных физических единицах измерения (в мерах линейных, площади, объема, массы и др.), и денежными, или стоимостными, когда они представляют собой денежную оценку экономических объектов.
ВАРИАЦИЯ - различия в значениях того или иного признака у отдельных единиц, входящих в данную статистическую совокупность. Например, студенты учебной группы различаются по успеваемости, затратам времени на подготовку к занятиям, любимым занятиям в свободное время, росту, полу и т. д. Для изучения вариации используют ряды распределения и показатели размеров вариации. Изучение вариации позволяет судить об исходных данных с точки зрения их однородности. Чем больше вариация, больше различия между единицами, тем более неоднородны исходные данные.
- Введение
- Раздел I. Введение в теорию вероятностей
- Понятие о случайном событии
- Классическое определение вероятности
- Относительная частота. Статистическое определение вероятности.
- Геометрическая вероятность
- Свойства вероятностей Сложение вероятностей несовместимых событий
- Умножение вероятностей
- Сложение вероятностей совместимых событий
- Формула полной вероятности
- Основные формулы комбинаторики
- Дискретные и непрерывные случайные величины. Понятие «случайные величины»
- Закон распределения случайной величины
- Теоретические распределения вероятностей
- Биномиальное распределение
- Распределение Пуассона
- Числовые характеристики дискретных случайных величин
- Нормальное распределение
- Вопросы для самопроверки:
- Раздел II. Основные понятия и термины биологической статистики Генеральная совокупность и выборка
- Непреднамеренный отбор. Метод последовательных номеров. Случайный и механический методы отбора
- Признаки и показатели
- Правила ранжирования
- Способы группировки первичных данных.
- Схемы (модели) научного исследования
- Однофакторная и многофакторная модель Контрольные и экспериментальные группы
- Метод автоконтроля
- Метод дублирования
- Метод последовательного пополнения групп
- Численность контрольных и экспериментальных групп
- Научные гипотезы
- Направленные гипотезы
- Статистические критерии
- Параметрические критерии
- Непараметрические критерии
- Уровни статистической значимости
- 1 Рода.
- Вопросы для самопроверки
- Раздел III. Статистические методы обработки экспериментальных данных
- Проверка гипотезы о законе распределения
- Χ2 Пирсона
- Описательные статистики Концепция сжатия экспериментальных данных
- Показатели центральной тенденции. Средние.
- Медиана
- Персентили
- Показатели изменчивости
- Стандартизованные данные
- Показатели асимметрии и эксцесса
- Эксцесс
- Работа с качественными переменными Количественная оценка результатов эксперимента.
- Вопросы для самопроверки:
- Сравнение двух независимых групп т критерий Стьюдента
- Критерии согласия для дисперсий
- U критерий Маана-Уитни
- Сравнение качественных признаков Критерий χ2
- Сравнение долей
- Точный тест Фишера
- Сравнение более двух независимых групп Однофакторный дисперсионный анализ Фишера
- Критерий Краскела-Уоллиса
- Сравнение двух зависимых групп Парный т критерий Стьюдента
- Парный критерий т – Вилкоксона
- Критерий x2r Фридмана
- Тест Мак-Немара
- Корреляционный анализ
- Вычисление и интерпретация параметров парной линейной корреляции
- Условия применения и ограничения корреляционно анализа
- Вычисление и интерпретация параметров парной линейной корреляции
- Измерение связи количественных признаков
- Измерение связи порядковых признаков
- Измерение связи номинальных признаков
- Относительный риск. Отношение шансов
- Статистическая оценка надежности параметров парной корреляции
- Частная корреляция
- Факторный анализ
- Вопросы для самопроверки:
- Регрессионный анализ
- Метод наименьших квадратов
- Выбор формы функциональной зависимости
- Применение парного линейного уравнения регрессии
- Корреляционно-регрессионные модели (крм) и их применение в анализе и прогнозе.
- Логистическая регрессия
- Анализ динамических изменений Применение метода наименьших квадратов при исследовании тенденции развития
- Анализ циклических изменений
- Метод обычных средних
- Метод корригирования средних
- Метод отношения фактических данных
- Ошибки, допускаемые при количественной характеристике сезонных колебаний
- Кластерный анализ
- Иерархическое дерево
- Меры расстояния
- Правила объединения или связи
- Метод k средних
- Выбор между параметрическими и непараметрическими тестами: легкая ситуация.
- Выбор между параметрическими и непараметрическими тестами: сложные случаи.
- Выбор между параметрическим и непараметрическим тестом: насколько это на самом деле влияет на результат?
- Одно или двухсторонняя p-оценка?
- Парный или непарный тест?
- Тест Фишера или хи-квадрат?
- Регрессия или корреляция?
- Вопросы для самопроверки:
- Раздел IV. Работа с программой easystatistics Общие сведения о программе EasyStatistics
- Создание новой базы данных
- Работа с файлами
- Копирование и вставка данных
- Работа с фильтрами
- Работа с переменными и строками
- Статистические методы Описательные статистики
- Частотный анализ
- Сравнение независимых выборок
- Сравнение связанных выборок
- Дисперсионный анализ
- Корреляционный анализ
- Множественная регрессия
- Проверка типа распределения эмпирических данных
- Вероятностный калькулятор
- Задания для самостоятельной работы с программой
- Список рекомендуемой литературы
- Граничные (критические) значения 2-критерия, соответствующие разным вероятностям допустимой ошибки и разным степеням свободы
- Критические значения коэффициентов корреляции для различных степеней свободы (n - 2) и разных вероятностей допустимых ошибок