Признаки и показатели
ПРИЗНАКОМ в статистике называют свойство, характерную черту или иную особенность единиц совокупности, которые могут быть наблюдаемы и измерены. Признаки, принимающие различные значения или видоизменения у отдельных единиц совокупности, называются варьирующими, а отдельные их значения или видоизменения - вариантами.
В литературе приняты различные принципы классификации признаков по шкалам измерений. Классификация в зависимости от числа допустимых арифметических операций над признаками, измеренными в данных шкалах, включает:
Номинальные признаки (признаки с неупорядоченными состояниями, классификационные признаки), например: велосипед, мотоцикл, автомобиль. Номинальные признаки могут быть оцифрованы — 0,1,2, однако смысла эти цифры, за исключением возможности различать признаки между собой, не имеют. Частным случаем номинальных признаков являются бинарные (качественные, дихотомические) признаки, представляющие собой номинальные признаки с двумя градациями, например: «нет» — 0, «да» — 1. Рекомендуется для бинарных признаков использовать оцифровку типа 0 и 1, а не какую-либо иную (например, -1 и +1), так как только эти две цифры предполагается использовать в методах анализа бинарных признаков.
Порядковые признаки (признаки с упорядоченными состояниями, ординальные признаки), например: отлично, хорошо, удовлетворительно, плохо. Порядок состояний имеет смысл, признаки могут быть осмысленно оцифрованы (в данном примере: 5, 4, 3, 2) и могут сравниваться между собой, однако расстояния между ними не определены. Как и предыдущие, подобного типа признаки часто используются в задачах диагностики, в том числе медицинской.
Количественные (численные, вариационные) признаки, иногда подразделяемые на интервальные и относительные, различающиеся положением нулевой отметки на шкале измерения. Например, год рождения — относительный количественный признак, а срок службы в рядах вооруженных сил — интервальный количественный признак. Если в первом примере определены только операции различения, сравнения и вычитания, то во втором к ним добавляются операции сложения и отношения. Численные признаки определяют измеряемые или исчислимые количества (величины) и являются истинными количественными, причем могут измеряться как непрерывные, так и целочисленные признаки.
Действия над признаками, измеренными в различных шкалах
Шкала измерения | Допустимые действия | Пример применения |
Номинальная | Различение | Наличие или отсутствие симптома |
Порядковая | Различение, сравнение | Школьная оценка |
Количественная | Различение, сравнение, все арифметические операции | Температура, масса, время, длина |
Шкалы могут приводиться одна к другой: количественная шкала — к порядковой или номинальной, порядковая шкала — к номинальной. Обратные операции считаются некорректными. Приведение одной шкалы к другой обычно называют понижением шкалы. Приведение признаков к шкале, отличной от тех, в которых первоначально признаки были измерены, необходимо при анализе групп признаков, измеренных в разных шкалах. Понижение шкалы ведет к потере некоторой части информации об изучаемых признаках.
- Введение
- Раздел I. Введение в теорию вероятностей
- Понятие о случайном событии
- Классическое определение вероятности
- Относительная частота. Статистическое определение вероятности.
- Геометрическая вероятность
- Свойства вероятностей Сложение вероятностей несовместимых событий
- Умножение вероятностей
- Сложение вероятностей совместимых событий
- Формула полной вероятности
- Основные формулы комбинаторики
- Дискретные и непрерывные случайные величины. Понятие «случайные величины»
- Закон распределения случайной величины
- Теоретические распределения вероятностей
- Биномиальное распределение
- Распределение Пуассона
- Числовые характеристики дискретных случайных величин
- Нормальное распределение
- Вопросы для самопроверки:
- Раздел II. Основные понятия и термины биологической статистики Генеральная совокупность и выборка
- Непреднамеренный отбор. Метод последовательных номеров. Случайный и механический методы отбора
- Признаки и показатели
- Правила ранжирования
- Способы группировки первичных данных.
- Схемы (модели) научного исследования
- Однофакторная и многофакторная модель Контрольные и экспериментальные группы
- Метод автоконтроля
- Метод дублирования
- Метод последовательного пополнения групп
- Численность контрольных и экспериментальных групп
- Научные гипотезы
- Направленные гипотезы
- Статистические критерии
- Параметрические критерии
- Непараметрические критерии
- Уровни статистической значимости
- 1 Рода.
- Вопросы для самопроверки
- Раздел III. Статистические методы обработки экспериментальных данных
- Проверка гипотезы о законе распределения
- Χ2 Пирсона
- Описательные статистики Концепция сжатия экспериментальных данных
- Показатели центральной тенденции. Средние.
- Медиана
- Персентили
- Показатели изменчивости
- Стандартизованные данные
- Показатели асимметрии и эксцесса
- Эксцесс
- Работа с качественными переменными Количественная оценка результатов эксперимента.
- Вопросы для самопроверки:
- Сравнение двух независимых групп т критерий Стьюдента
- Критерии согласия для дисперсий
- U критерий Маана-Уитни
- Сравнение качественных признаков Критерий χ2
- Сравнение долей
- Точный тест Фишера
- Сравнение более двух независимых групп Однофакторный дисперсионный анализ Фишера
- Критерий Краскела-Уоллиса
- Сравнение двух зависимых групп Парный т критерий Стьюдента
- Парный критерий т – Вилкоксона
- Критерий x2r Фридмана
- Тест Мак-Немара
- Корреляционный анализ
- Вычисление и интерпретация параметров парной линейной корреляции
- Условия применения и ограничения корреляционно анализа
- Вычисление и интерпретация параметров парной линейной корреляции
- Измерение связи количественных признаков
- Измерение связи порядковых признаков
- Измерение связи номинальных признаков
- Относительный риск. Отношение шансов
- Статистическая оценка надежности параметров парной корреляции
- Частная корреляция
- Факторный анализ
- Вопросы для самопроверки:
- Регрессионный анализ
- Метод наименьших квадратов
- Выбор формы функциональной зависимости
- Применение парного линейного уравнения регрессии
- Корреляционно-регрессионные модели (крм) и их применение в анализе и прогнозе.
- Логистическая регрессия
- Анализ динамических изменений Применение метода наименьших квадратов при исследовании тенденции развития
- Анализ циклических изменений
- Метод обычных средних
- Метод корригирования средних
- Метод отношения фактических данных
- Ошибки, допускаемые при количественной характеристике сезонных колебаний
- Кластерный анализ
- Иерархическое дерево
- Меры расстояния
- Правила объединения или связи
- Метод k средних
- Выбор между параметрическими и непараметрическими тестами: легкая ситуация.
- Выбор между параметрическими и непараметрическими тестами: сложные случаи.
- Выбор между параметрическим и непараметрическим тестом: насколько это на самом деле влияет на результат?
- Одно или двухсторонняя p-оценка?
- Парный или непарный тест?
- Тест Фишера или хи-квадрат?
- Регрессия или корреляция?
- Вопросы для самопроверки:
- Раздел IV. Работа с программой easystatistics Общие сведения о программе EasyStatistics
- Создание новой базы данных
- Работа с файлами
- Копирование и вставка данных
- Работа с фильтрами
- Работа с переменными и строками
- Статистические методы Описательные статистики
- Частотный анализ
- Сравнение независимых выборок
- Сравнение связанных выборок
- Дисперсионный анализ
- Корреляционный анализ
- Множественная регрессия
- Проверка типа распределения эмпирических данных
- Вероятностный калькулятор
- Задания для самостоятельной работы с программой
- Список рекомендуемой литературы
- Граничные (критические) значения 2-критерия, соответствующие разным вероятностям допустимой ошибки и разным степеням свободы
- Критические значения коэффициентов корреляции для различных степеней свободы (n - 2) и разных вероятностей допустимых ошибок