Взаимное расположение плоскостей в пространстве. Угол между плоскостями. Двугранный угол. Измерение двугранных углов.
Пусть уравнения A1x + B1y + C1z + D1 = 0, A12 + B12 + C12 ≠ 0 и A2x + B2y + C2 z + D2 = 0,
A22 + B22 + C22 ≠ 0, описывают в одной и той же декартовой системе координат две плоскости, нормальные векторы которых соответственно N1 = (A1, B1, C1) и N2 = (A2, B2, C2). Угол между этими плоскостями — это угол между их нормальными векторами и определяется по формуле
Плоскости совпадают, тогда и только тогда, когда существует отличное от нуля число k такое, что одновременно выполнены равенства A1= kA2 ,B1= kB2 , C1= kC2 , D1= kD2.
Плоскости параллельны, тогда и только тогда, когда существует отличное от нуля число k такое, что одновременно выполнены равенства A1= kA2 ,B1= kB2 , C1= kC2 и D1≠ kD2 (нормальные векторы плоскостей параллельны).
Плоскости перпендикулярны, тогда и только тогда, когда A1A2 + B1B2+ C1C2 = 0 (нормальные векторы плоскостей перпендикулярны).
Угол между плоскостями.
| |
|
|
Угол между двумя плоскостями в пространстве связан с углом между нормалями к этим плоскостям 1 соотношением: = 1 или = 1800 - 1, т.е.
cos = cos1.
Определим угол 1. Известно, что плоскости могут быть заданы соотношениями: , где(A1, B1, C1),
(A2, B2, C2). Угол между векторами нормали найдем из их скалярного произведения: . Таким образом, угол между плоскостями находится по формуле:
Определение 1. Двугранным углом называется часть пространства, ограниченная двумя полуплоскостями, границей каждой из которых служит их общая прямая. Двугранный угол также называют углом между данными плоскостями.
Определение 2. Плоскости (полуплоскости), которые ограничивают двугранный угол, называются гранями двугранного угла.
Определение 3. Линия пересечения граней двугранного угла называется ребром двугранного угла. Определение 4. Линейным углом двугранного угла называется угол, образованный двумя полупрямыми, полученными при пересечении граней двугранного угла плоскостью, перпендикулярной ребру этого двугранного угла. Значение линейного угла данного двугранного угла есть значение данного двугранного угла.
- 1. Рациональные уравнения и методы их решения
- Методы их решения
- 1. Использование области определения уравнения.
- 2. Разложение на множители.
- 3. Замена переменной.
- Функциональные методы
- 4. Использование ограниченности функций.
- 5. Использование монотонности функций.
- 2. Рациональные неравенства и методы их решения
- Алгебраические неравенства.
- 3. Модуль числа. Решение уравнений, содержащих переменную под знаком модуля
- Основные свойства модуля:
- I тип уравнений
- II тип уравнений
- III тип уравнений
- IV тип уравнений
- V тип уравнений
- VI тип уравнений
- 4. Модуль числа. Решение неравенств, содержащих переменную под знаком модуля
- 1 Способ. Использование геометрического смысла модуля.
- 2 Способ. Использование свойства модулей: модули противоположных чисел равны.
- 3 Способ: Использование определение модуля числа.
- 4 Способ: Решение неравенства на интервалах
- 5.Уравнения. Равносильные уравнения. Уравнения–следствия. Теоремы о равносильных преобразованиях уравнений
- Преобразования, приводящие к равносильному уравнению
- Теоремы о равносильных преобразованиях уравнений
- 6. Неравенства. Равносильные неравенства. Неравенства-следствия. Теоремы о равносильных преобразованиях неравенств
- 7. Системы и совокупности уравнений. Основные методы решения систем уравнений
- Системы и совокупности уравнений
- 8. Системы и совокупности неравенств
- Основные методы решения систем двух неравенств с двумя неизвестными
- 9. Иррациональные уравнения. Основные методы решения иррациональных уравнений
- 10. Иррациональные неравенства. Основные методы решения иррациональных неравенств
- 11. Показательные уравнения. Основные методы решения показательных уравнений
- 12. Показательные неравенства. Основные методы решения показательных неравенств.
- 13. Логарифмические уравнения. Основные методы решения логарифмических уравнений
- 14 . Логарифмические неравенства. Основные методы решения логарифмических неравенств
- 15. Основные методы решения тригонометрических уравнений
- 16. Основные методы решения тригонометрических неравенств
- 17 . Уравнение с параметрами. Решение линейных уравнений с параметрами.
- 18. Уравнения с параметрами. Решение квадратных уравнений с параметрами
- 19. Методы решения уравнения . Методы решения неравенства
- 20. Обобщающий метод интервалов для решения неравенств
- 21. Основные тригонометрические функции, их свойства, графики
- 22. Обратные тригонометрические функции, графики, свойства
- 1. Метрические соотношения в окружности. Свойства хорд. Свойства секущих и касательных к окружности. Измерение углов, связанных с окружностью
- Свойства хорд
- 2. Окружность, вписанная в треугольник. Формулы, связывающие элементы треугольника с радиусом вписанной окружности
- 3. Окружность, описанная около треугольника. Формулы, связывающие элементы треугольника с радиусом описанной окружности
- 4. Прямая Эйлера
- 5. Окружность Эйлера
- 6. Вневписанная окружность.
- 7. Центроид треугольника
- 8. Ортоцентр треугольника. Ортотреугольник. Свойства ортоцентра треугольника
- 9. Вписанные четырехугольники. Вписанные многоугольники
- 10. Описанные четырехугольники. Описанные многоугольники
- 11. Теорема Пифагора. Обобщенная теорема Пифагора.
- 12. Теорема Пифагора для четырехугольников.
- 13. Теорема Птолемея.
- 14. Методы геометрических преобразований. Симметрия. Поворот. Параллельный перенос. Подобие. Гомотетия.
- 15. Метод площадей.
- 1.Свойства параллельного проектирования. Изображение плоских фигур. Требования к проекционным чертежам.
- 2. Свойства параллельного проектирования. Изображение многоугольников и тел вращения. Теорема Польке-Шварца.
- 3.Методы построения сечений многогранников.
- 4.Взаимное расположение прямых в пространстве. Скрещивающиеся прямые. Признак скрещивающихся прямых. Угол между скрещивающимися прямыми. Расстояние между скрещивающимися прямыми.
- Взаимное расположение прямой и плоскости в пространстве. Угол между прямой и плоскостью.
- Взаимное расположение плоскостей в пространстве. Угол между плоскостями. Двугранный угол. Измерение двугранных углов.
- Взаимное расположение плоскостей в пространстве. Многогранный угол. Трехгранный угол. Их свойства.