logo search
Теоретико-игровые методы принятия решений (Еремеев А

Классификация игровых моделей

Классификация теоретико-игровых моделей представлена на рис. 1.1.

В зависимости от дискретности или непрерывности множества стратегий игры соответственно делятся на дискретныеилинепрерывные, причем дискретные игры в зависимости от конечности или бесконечности множества стратегий могут быть соответственноконечнымиилибесконечными, непрерывные игры – всегда бесконечные.

В зависимости от числа участвующих в игре игроков игры бывают N лиц, которые в зависимости от того, разрешены коалиции (кооперации) игроков или нет, могут быть соответственнокоалиционными(кооперативными) илинекоалиционными(некооперативными), или 2-х лиц(парными), которые в зависимости от суммарной величины платежа могут бытьантагонистическими, если суммарный платеж игроков равен нулю, илинеантагонистическими, если суммарный платеж не равен нулю. Заметим, что в антагонистической игре интересы игроков строго противоположны, т.е. выигрыш одного игрока в точности равен проигрышу другого, а в неантагонистической – просто не совпадают, что ведет к ситуации, когда увеличение выигрыша одного игрока ведет к уменьшению выигрыша другого.

Рис. 1.1. Классификация теоретико-игровых моделей

Игра называется игрой с полной информацией, если игрокам известна вся предыстория игры, т.е. все личные и случайные ходы противников (противника), в противном случае имеем игрус неполной информацией.

В зависимости от суммарного платежа игроков игры делятся на игры с нулевой суммой, если суммарный платеж равен нулю, ис ненулевой суммой, в противном случае. Примером игры с нулевой суммой является парная антагонистическая игра.

И, наконец, в зависимости от числа ходов в партии игры могут быть одноходовыеимногоходовые.

Наиболее разработанными в теории игр являются модели игр 2-х лиц с нулевой суммой (антагонистических игр).