Определение игры с упорядоченными исходами при наличии ряда критериев
Рассмотрим следующий пример. Пусть ожидается эпидемия некоторого заболевания, который может быть вызван вирусами, условно обозначенными В1,В2,В3. Против данного типа вирусов могут быть использованы вакцины типаV1, …,V7. Предполагается, что чем больше номер вакциныi, тем меньше затраты αi(в некоторых условных единицах) на ее производство, пусть αi{1;2;3;4;5;6;7}. Эффективность вакцины типаVi,i= 1, …, 7, оценивается величинойi{1;2;3;4} (чем больше значениеi, тем эффективнее вакцина).
Технология производства вакцины такова, что одновременно в массовом порядке может производиться вакцина только одного типа. Требуется определить, какого типа вакцину следует производить с целью минимизации затрат на производство (что позволит произвести больше вакцины при тех же затратах) и максимизации ее эффективности.
Введем понятие исходаR(Vi, Bj) = (i,i) – результата (выигрыша), отражающего как затратыαiна производство вакциныVi, так и ее эффективностьiприменительно к вирусу типаBj. Тогда для поиска оптимального решения (стратегии производства) может быть использован критерий
R(Vi, Bj) (max, max).
-
Содержание
- Теоретико-игровые методы принятия решений
- Isbn 5-7046-1383-7
- Введение
- Основные понятия теории игр. Классификация игровых моделей
- Основные понятия теории игр
- Классификация игровых моделей
- Контрольные вопросы к разделу 1
- Антагонистическая игра. Поиск решения на дереве игры
- Представление антагонистической игры
- Поиск решения на дереве игры
- Общие замечания
- Метод максимина
- Метод-отсечений
- Неглубокое -отсечение
- Глубокое -отсечение
- Контрольные вопросы к разделу 2
- Методы решения антагонистических игр, представленных в матричной форме
- Матричное представление антагонистической игры
- Наличие седловой точки
- Методы решения матричных игр при отсутствии седловой точки
- Смешанные стратегии
- Метод Лагранжа
- Метод линейного программирования
- Итерационный метод Брауна-Робинсона
- Практический пример
- Контрольные вопросы к разделу 3
- Игра двух лиц с произвольной суммой
- Определение игры двух лиц с произвольной суммой
- Теория Нэша для некооперативных игр
- Рефлексивная игра
- Практический пример
- Контрольные вопросы к разделу 4
- Основы теории статистических решений. Игры с «природой»
- Определение игры «с природой»
- Методы решения игр «с природой»
- Случай стохастической неопределенности
- Случай с неизвестными вероятностями состояний «природы»
- Контрольные вопросы к разделу 5
- Игры с упорядоченными исходами
- Определение игры с упорядоченными исходами при наличии ряда критериев
- Поиск решения игры с упорядоченными исходами
- Контрольные вопросы к разделу 6
- Программная система для решения антагонистических игр
- Общее описание системы
- Примеры работы с системой
- Практический пример
- Контрольные вопросы к разделу 7
- Библиографический список
- Оглавление