Общие замечания
Дерево игры может быть построено, используя известные методы полного перебора («в глубину», «в ширину», комбинированный) или сокращенного перебора, выполняемого с использованием некоторой оценочной функции (точной или приближенной, эвристической) [7, 8].
Определение 2.2.Алгоритм поиска решения называетсядопустимым, если он оканчивает свою работу построением оптимального решения (оптимального пути к цели).
Определение 2.3. Допустимый алгоритм поиска решения называетсяоптимальным, если он при поиске решения анализирует (раскрывает) минимальное число вершин.
Примером допустимого (но, конечно, не оптимального) алгоритма является алгоритм, построенный на основе полного перебора. Эвристические алгоритмы, использующие при поиске решения методы сокращенного перебора на основе эвристических функций, как правило, не являются допустимыми, т.е. эти алгоритмы не гарантируют в общем случае нахождение оптимального решения. Преимуществом эвристических алгоритмов являются существенно меньшие затраты вычислительных ресурсов (времени вычислений и памяти) по сравнению с алгоритмами, основанными на полном переборе.
Нильсон Н. (NilssonN.) в своей классической работе по искусственному интеллекту [7] доказал теорему, определяющую требования к эвристической функции, чтобы алгоритм поиска решения, построенный на ее основе, был допустимым. К сожалению, проверка выполнимости этого требования, в свою очередь, является сложной и обычно практически нереализуемой задачей.
Рассмотрим два универсальных метода сокращенного перебора на дереве игры – метод максимина (максиминный метод) и метод -отсечений.
-
Содержание
- Теоретико-игровые методы принятия решений
- Isbn 5-7046-1383-7
- Введение
- Основные понятия теории игр. Классификация игровых моделей
- Основные понятия теории игр
- Классификация игровых моделей
- Контрольные вопросы к разделу 1
- Антагонистическая игра. Поиск решения на дереве игры
- Представление антагонистической игры
- Поиск решения на дереве игры
- Общие замечания
- Метод максимина
- Метод-отсечений
- Неглубокое -отсечение
- Глубокое -отсечение
- Контрольные вопросы к разделу 2
- Методы решения антагонистических игр, представленных в матричной форме
- Матричное представление антагонистической игры
- Наличие седловой точки
- Методы решения матричных игр при отсутствии седловой точки
- Смешанные стратегии
- Метод Лагранжа
- Метод линейного программирования
- Итерационный метод Брауна-Робинсона
- Практический пример
- Контрольные вопросы к разделу 3
- Игра двух лиц с произвольной суммой
- Определение игры двух лиц с произвольной суммой
- Теория Нэша для некооперативных игр
- Рефлексивная игра
- Практический пример
- Контрольные вопросы к разделу 4
- Основы теории статистических решений. Игры с «природой»
- Определение игры «с природой»
- Методы решения игр «с природой»
- Случай стохастической неопределенности
- Случай с неизвестными вероятностями состояний «природы»
- Контрольные вопросы к разделу 5
- Игры с упорядоченными исходами
- Определение игры с упорядоченными исходами при наличии ряда критериев
- Поиск решения игры с упорядоченными исходами
- Контрольные вопросы к разделу 6
- Программная система для решения антагонистических игр
- Общее описание системы
- Примеры работы с системой
- Практический пример
- Контрольные вопросы к разделу 7
- Библиографический список
- Оглавление