logo search
PRZ_-_shpory

2. Свойства параллельного проектирования. Изображение многоугольников и тел вращения. Теорема Польке-Шварца.

Допустим, что в пространстве задана произвольная плоскость α и пересекающая ее прямая a. Выберем в пространстве произвольную точку M и проведем через нее прямую b, параллельную a. Точка пересечения M1 прямой b с плоскостью a называется параллельной проекцией точки M на эту плоскость. Плоскость α называется плоскостью проектирования, а прямая a – направлением проектирования. Пусть в пространстве задана некоторая фигура K. Отображение, ставящее в соответствие каждой точке M фигуры K ее параллельную проекцию – точку M1 на плоскость α в направлении a, называется параллельным проектированием (на плоскость α в направлении a). Множество точек M1 называется параллельной проекцией фигуры K на плоскость α в направлении a. Параллельное проектирование применяется для изображения пространственных фигур на плоскости и обладает следующими свойствами (здесь мы предполагаем, что направление проектирования не параллельно рассматриваемым отрезкам и прямым; в противном случае проекцией будет являться точка).

Проекцией прямой является прямая, проекция отрезка есть отрезок.

Две параллельные прямые проектируются либо в две параллельные прямые, либо в одну и ту же прямую. Проекции параллельных отрезков лежат либо на параллельных прямых, либо на одной прямой.

Длины проекций параллельных отрезков, а также длины проекций отрезков, лежащих на одной прямой, пропорциональны длинам самих этих отрезков.

Изображением данного треугольника может служить любой треугольник.

Для изображения плоского многоугольника выделяют в нем вершины A1A2A3. Затем строят изображение треугольника A1A2A3 в виде произвольного треугольника. Изображение остальных вершин многоугольника строится однозначно с использованием свойств параллельного проектирования.

Из приведенного утверждения следует, что изображением данного треугольника может служить треугольник, подобный любому треугольнику. В частности, любой треугольник можно спроектировать в правильный треугольник, то есть правильный треугольник может служить проекцией любого треугольника.

При изображении многогранников полезно следующее утверждение.

Теорема 4.1. Теорема Польке – Шварца. Изображением данного тетраэдра может служить любой четырехугольник с проведенными в нем диагоналями (не обязательно выпуклый).

Для изображения многогранника выделяют в нем четыре вершины A1A2A3A4. Затем строят изображение тетраэдра A1A2A3A4 в виде произвольного четырехугольника с проведенными в нем диагоналями. Изображение остальных вершин многогранника строится однозначно с использованием свойств параллельного проектирования