Корреляционный анализ
Различают два типа связей между различными явлениями и их признаками: функциональную или жестко детерминированную, с одной стороны, и статистическую или стохастически детерминированную, с другой. Строго определить различие этих двух типов связи можно тогда, когда они получают математическую формулировку. Для простоты будем говорить о связи двух явлений или двух признаков, математически отображаемой в форме уравнения связи двух переменных.
Если с изменением значения одной из переменных вторая изменяется строго определенным образом, т. е. значению одной переменной соответствует одно или несколько точно заданных значений другой переменной, связь между ними является функциональной.
Нередко говорят о строгом соответствии лишь одного значения второй из переменных каждому значению первой из них, но это неверно. Например, связь между x и y является строго функциональной если y=√x; но значению x=4 соответствует не одно, а два значения; y1=2 и y2=-2. Уравнения более высоких степеней могут иметь несколько корней, связь разумеется остается функциональной.
Функциональная связь двух величин возможна лишь при условии, что вторая из них зависит только от первой и ни от чего более. В реальной природе таких связей нет; они являются лишь абстракциями, полезными и необходимыми при анализе явлений, но упрощающими реальность. Функциональная зависимость данной величины y от многих факторов x1, x2, ... xk возможна только в том случае, если величина y всегда зависит только от переменного набора факторов x1, x2, ... xk и ни от чего больше. Между тем все явления и процессы реального мира связаны между собой, и нет такого конечного числа переменных k, которые абсолютно полно определяли бы собой зависимую величину y. Следовательно, множественная функциональная зависимость переменных есть тоже абстракция, упрощающая реальность.
Однако в науке успешно используют представление связей как функциональных не только в аналитических целях, но нередко и в целях прогнозирования. Это возможно потому, что в некоторых простых системах интересующая нас переменная зависит в основном (скажем на 99% или даже на 99.99%) от немоногих других переменных или только от одной переменной. То есть связь в такой несложной системе является хотя и не абсолютно функциональной, но практически очень близкой к таковой.
Длина года (период обращения Земли вокруг Солнца) почти функционально зависит только от массы Солнца и расстояния Земли от него. На самом деле она зависит в очень слабой степени и от масс, и расстояния других планет от Земли, но вносимые ими (и тем более в миллионы раз более далекими звездами) искажения функциональной связи для всех практических целей, кроме космонавтики, пренебрежимо малы.
Статистическая связь не имеет ограничений и условий, присущих функциональной связи. Если с изменением значения одной переменной вторая может в определенных пределах принимать любые значения с вероятностями, но ее среднее значение или иные статистические (массовые) характеристики изменяются по определенному закону - связь является статистической. Иными словами, при статистической связи разным значениям одной переменной соответствуют разные распределения значений другой переменной.
Корреляционной связью называют важнейший частный случай статистической связи, состоящий в том, что различным значениям одной переменной соответствуют различные средние значения другой. С изменением значения x закономерным образом изменяется среднее значение признака y; в то время как в каждом отдельном случае значение признака y (с различными степенями вероятности) может принимать множество различных значений.
Если же с изменением значения признака x среднее значение признака y не изменяется закономерным образом, но закономерно изменяется другая статистическая характерис-тика (показатели вариации, асимметрии, эксцесса и т.п.), то связь является не корреляционной, а статистической.
Статистическая связь между двумя признаками (переменными величинами) предполагает, что каждый из них имеет случайную вариацию индивидуальных значений относительно средней величины. Если же такую вариацию имеет лишь один из признаков, а значения другого являются строго детерминированными, то говорят лишь о регрессии, но не о статистической (тем более корреляционной) связи.
При анализе динамических рядов можно измерять регрессию уровней ряда урожайности (имеющих случайную изменчивость) на номера лет. Но нельзя говорить о корреляции между ними и применять показатели корреляции с соответствующей им интерпретацией.
Само слово корреляция ввел в употребление в статистику английский биолог и статистик Френсис Гальтон в конце XIX века. Тогда оно писалось как “corelation” (соответствие), но не просто “связь” (relation), а “как бы связь”, т.е. связь, но не в привычной функциональной форме. В науке вообще, а именно в палеонтологии, термин “корреляция” применял еще раньше, в конце XVIII века французский палеонтолог Жорж Кювье. Он ввел даже “закон корреляции” частей и органов животных. “Закон корреляции” помогает восстановить по найденным в раскопках черепу, костям и т.д. облик всего животного и его место в системе: если череп с рогами, то это было травоядное животное, а его конечностями были копыта; если же лапа с когтями - то хищное животное без рогов, но с крупными клыками.
Например, измеряем рост и вес человека, каждое измерение представлено точкой в двумерном пространстве:
Несмотря на то, что величины носят случайный характер, в общем наблюдается некоторая зависимость - величины коррелируют.
В данном случае это положительная корреляция (при увеличении одного параметра второй тоже увеличивается). Возможны также такие случаи:
Отрицательная корреляция:
| Отсутствие корреляции:
|
Взаимосвязь между переменными необходимо охарактеризовать численно, чтобы, например, различать такие случаи:
|
|
Корреляционная связь между признаками может возникать различными путями:
Важнейший путь - причинная зависимость результативного признака (его вариации) от вариации факторного признака. Например, признак x - балл оценки плодородия почв, признак y - урожайность сельскохозяйственной культуры. Здесь совершенно ясно логически, какой признак является независимой переменной (фактор) x, какой - зависимой переменной (результат) y.
Совершенно иная интерпретация нужна при изучении корреляционной связи между двумя следствиями одной причины. Известен классический пример, приведенный крупнейшим статистиком России начала XXв А.А. Чупровым: если в качестве признака x взять число пожарных команд в городе, а за признак y - сумму убытков за год в городе от пожаров, то между признаками x и y в совокупности городов России существенная прямая корреляция; в среднем, чем больше пожарников в городе, тем больше и убытков от пожаров. Уж не занимались ли поджигательством из боязни потерять работу? Но дело в другом. Данную корреляцию нельзя интерпретировать как связь причины и следствия; оба признака - следствия общей причины - размера города. Вполне логично, что в крупных городах больше пожарных частей, но и больше пожаров, и убытков от них за год, чем в мелких городах.
Третий путь возникновения корреляции - взаимосвязь признаков, каждый из которых и причина и следствие. В биологии примером таких взаимосвязей являются механизмы биологических обратных связей между параметрами организма при поддержании гомеостаза.
- Введение
- Раздел I. Введение в теорию вероятностей
- Понятие о случайном событии
- Классическое определение вероятности
- Относительная частота. Статистическое определение вероятности.
- Геометрическая вероятность
- Свойства вероятностей Сложение вероятностей несовместимых событий
- Умножение вероятностей
- Сложение вероятностей совместимых событий
- Формула полной вероятности
- Основные формулы комбинаторики
- Дискретные и непрерывные случайные величины. Понятие «случайные величины»
- Закон распределения случайной величины
- Теоретические распределения вероятностей
- Биномиальное распределение
- Распределение Пуассона
- Числовые характеристики дискретных случайных величин
- Нормальное распределение
- Вопросы для самопроверки:
- Раздел II. Основные понятия и термины биологической статистики Генеральная совокупность и выборка
- Непреднамеренный отбор. Метод последовательных номеров. Случайный и механический методы отбора
- Признаки и показатели
- Правила ранжирования
- Способы группировки первичных данных.
- Схемы (модели) научного исследования
- Однофакторная и многофакторная модель Контрольные и экспериментальные группы
- Метод автоконтроля
- Метод дублирования
- Метод последовательного пополнения групп
- Численность контрольных и экспериментальных групп
- Научные гипотезы
- Направленные гипотезы
- Статистические критерии
- Параметрические критерии
- Непараметрические критерии
- Уровни статистической значимости
- 1 Рода.
- Вопросы для самопроверки
- Раздел III. Статистические методы обработки экспериментальных данных
- Проверка гипотезы о законе распределения
- Χ2 Пирсона
- Описательные статистики Концепция сжатия экспериментальных данных
- Показатели центральной тенденции. Средние.
- Медиана
- Персентили
- Показатели изменчивости
- Стандартизованные данные
- Показатели асимметрии и эксцесса
- Эксцесс
- Работа с качественными переменными Количественная оценка результатов эксперимента.
- Вопросы для самопроверки:
- Сравнение двух независимых групп т критерий Стьюдента
- Критерии согласия для дисперсий
- U критерий Маана-Уитни
- Сравнение качественных признаков Критерий χ2
- Сравнение долей
- Точный тест Фишера
- Сравнение более двух независимых групп Однофакторный дисперсионный анализ Фишера
- Критерий Краскела-Уоллиса
- Сравнение двух зависимых групп Парный т критерий Стьюдента
- Парный критерий т – Вилкоксона
- Критерий x2r Фридмана
- Тест Мак-Немара
- Корреляционный анализ
- Вычисление и интерпретация параметров парной линейной корреляции
- Условия применения и ограничения корреляционно анализа
- Вычисление и интерпретация параметров парной линейной корреляции
- Измерение связи количественных признаков
- Измерение связи порядковых признаков
- Измерение связи номинальных признаков
- Относительный риск. Отношение шансов
- Статистическая оценка надежности параметров парной корреляции
- Частная корреляция
- Факторный анализ
- Вопросы для самопроверки:
- Регрессионный анализ
- Метод наименьших квадратов
- Выбор формы функциональной зависимости
- Применение парного линейного уравнения регрессии
- Корреляционно-регрессионные модели (крм) и их применение в анализе и прогнозе.
- Логистическая регрессия
- Анализ динамических изменений Применение метода наименьших квадратов при исследовании тенденции развития
- Анализ циклических изменений
- Метод обычных средних
- Метод корригирования средних
- Метод отношения фактических данных
- Ошибки, допускаемые при количественной характеристике сезонных колебаний
- Кластерный анализ
- Иерархическое дерево
- Меры расстояния
- Правила объединения или связи
- Метод k средних
- Выбор между параметрическими и непараметрическими тестами: легкая ситуация.
- Выбор между параметрическими и непараметрическими тестами: сложные случаи.
- Выбор между параметрическим и непараметрическим тестом: насколько это на самом деле влияет на результат?
- Одно или двухсторонняя p-оценка?
- Парный или непарный тест?
- Тест Фишера или хи-квадрат?
- Регрессия или корреляция?
- Вопросы для самопроверки:
- Раздел IV. Работа с программой easystatistics Общие сведения о программе EasyStatistics
- Создание новой базы данных
- Работа с файлами
- Копирование и вставка данных
- Работа с фильтрами
- Работа с переменными и строками
- Статистические методы Описательные статистики
- Частотный анализ
- Сравнение независимых выборок
- Сравнение связанных выборок
- Дисперсионный анализ
- Корреляционный анализ
- Множественная регрессия
- Проверка типа распределения эмпирических данных
- Вероятностный калькулятор
- Задания для самостоятельной работы с программой
- Список рекомендуемой литературы
- Граничные (критические) значения 2-критерия, соответствующие разным вероятностям допустимой ошибки и разным степеням свободы
- Критические значения коэффициентов корреляции для различных степеней свободы (n - 2) и разных вероятностей допустимых ошибок