logo search
Математические методы в биологии

Классическое определение вероятности

Всякое испыта­ние влечет за собой некоторую совокупность исходов — резуль­татов испытания, т. е. событий. Во многих случаях возможно пере­числить все события, которые могут быть исходами данного испы­тания.

Говорят, что совокупность событий обра­зует полную группу событий для данного испытания, если его ре­зультатом обязательно становится хотя бы одно из них.

События Ul, U2, ..., Un , образующие полную группу попарно несовместимых и равновозможных собы­тий, будем называть элементарными событиями.

Вернемся к опыту с подбрасыванием игральной кости. Пусть Ui — событие, состоящее в том, что кость выпала гранью с цифрой i. Как уже отмечалось, события U1, U2, …, U6 образуют полную группу попарно несовместимых событий. Так как кость предполагается однородной и симметрич­ной, то события U1, U2, …, U6 являются и равновозможными, т. е. элементарными.

Событие А называется благоприят­ствующим событию В, если наступление события А влечет за собой наступление события В.

Пусть при бросании игральной кости события U2, U4 и U6 — появление соответственно двух, четырех и шести очков и А — событие, состоящее в появлении четного очка; собы­тия U2, U4 и U6 благоприятствуют событию А.

Классическое определение вероятности

Вероятностью Р (А) события А называется отношение m/n числа элементарных событий, благоприятствующих событию А, к числу всех элементарных событий, т. е.

Вычислим вероятность выпадения герба при одном бросании монеты. Очевидно, событие А — выпадение герба и событие В — выпадение цифры — образуют полную группу несовместимых и равновозможных событий для данного испытания. Значит, здесь n = 2. Событию А благоприятствует лишь одно со­бытие — само А, т. е. здесь m = 1. Поэтому Р(А) = 0,5.

Найти вероятность того, что при бросании иг­ральной кости выпадет число очков, делящееся на 2 (событие А). Число элементарных событий здесь 6. Число благоприятст­вующих элементарных событий 3 (выпадение 2, 4 и 6).

Поэтому .

Из приведенного классического определения вероятности вы­текают следующие ее свойства.

1. Вероятность достоверного события равна единице.

Действительно, достоверному событию должны благоприят­ствовать все n элементарных событий, т. е. m = n и, следовательно, P(A)=1.

2. Вероятность невозможного события равна нулю. В самом деле, невозможному событию не может благоприят­ствовать ни одно из элементарных событий, т. е. m = 0, откуда P(A)=0.

3. Вероятность случайного события есть положительное число, заключенное между нулем и единицей.

Действительно, случайному событию благоприятствует лишь часть из общего числа элементарных событий. Поэтому в этом случае 0 < m < n , значит, 0 <= Р (А)<= 1.