logo search
PRZ_-_shpory

19. Методы решения уравнения . Методы решения неравенства

Уравнения и неравенства с параметрами – одна из самых тяжелых тем школьного курса математики. Параметры занимают особое место в системе упражнений, развивающего характера. Сложность решения уравнений и неравенств с параметрами связано с рассмотрением различных частных значений параметра, при которых задача имеет решение (не имеет решения), задана расп. на подзадачи. Каждое уравнение вида f(x;a)=0 можно рассмотреть как уравнение с параметром. Решить такое уравнение – это значит найти такие пары (x;a), которые удовлетворяют данному уравнению. Таким образом уравнение f(x;a)=0 можно рассмотреть как уравнение с 2-мя параметрами (х) и (а). если а – фиксированное значение, то уравнение f(x;a)=0 можно рассматривать как уравнение с одной переменной (х).

Если для каждого значения а из некоторого множества А решить уравнение f(x;a)=0 относительно х, то это уравнение называется уравнением с переменной х и параметром а. множество А – область значения параметра.

Если про множество А ничего не сказано, то а принадлежит R и нужно найти те значения а, при переходе через которые происходят качественные изменения уравнений. Эти значения называются контрольные. Решить уравнение с параметром – значит найти такие контрольные значения, при переходе через которые существенно меняются корни уравнения.

Каждое уравнение можно рассматривать как уравнение вида F(x;a)=0 . решение состоит из 2-х частей:

  1. F (x;a)=0 относительно х или относительно а.

  2. Исследование функции х=Р(а) или а=М(х)

Работа над уравнением с параметрами состоит из следующих наиболее типовых задач

1)Е (нахождение области значений функции)

2)определение тех промежутков из области определения функции, которым не могут принадлежать корни этого уравнения и тех значений параметра а, при которых эти корни не существуют.

3) построение графиков уравнений F(x;a)=0 и чтение данных графиков.