Показатели изменчивости
Изучение и количественное описание изменчивости (вариации) осуществляется различными методами, и можно сказать, что разработанные в математической статистике методы анализа экспериментальных данных в значительной своей части предназначены именно для оценки вариации.
Размах вариации. Это показатель, представляющий собой разность максимальной и минимальной вариант совокупности. Чем сильнее варьирует признак, тем больше размах вариации и наоборот.
Р = Хmax – Xmin
Лимиты и размах вариации - простые и наглядные характеристики варьирования, однако им присущи существенные недостатки: при повторных измерениях одного и того же группового объекта они могут существенно изменяться; кроме того, они не отображают существенные черты варьирования.
Более удобной характеристикой вариации мог бы служить показатель, который строится на основании отклонений вариант от их средней. Сумма таких отклонений, взятая без учета знаков и отнесенная к числу наблюдений, называется средним линейным отклонением.
Дисперсия и ее свойства. Несмотря на явное преимущество среднего линейного отклонения перед лимитами и размахом вариации, этот показатель не получил широкого распространения на практике. Наиболее подходящим оказался показатель, построенный не на отклонениях вариант от их средних, а на квадратах этих отклонений, его называют дисперсией (рассеяние) и выражают формулой .
Ценность дисперсии заключается в том, что, являясь мерой варьирования числовых значений признака вокруг их средней арифметической, она измеряет и внутреннюю изменчивость значений признака, зависящую от разностей между наблюдениями. Преимущество дисперсии перед другими показателями вариации состоит также в том, что она разлагается на составные компоненты, позволяя тем самым оценивать влияние различных факторов на величину учитываемого признака.
Вместе с тем установлено, что рассчитываемая по формуле дисперсия оказывается смещенной по отношению к своему генеральному параметру на величину, равную n/n-1. Чтобы получить несмещенную дисперсию, нужно в формулу ввести в качестве множителя поправку на смещенность, называемую поправкой Бесселя. В результате Разность n-1 называют числом степеней свободы, под которым понимают число свободно варьирующих единиц в составе численно ограниченной статистической совокупности.
Дисперсия обладает рядом важных свойств, из которых необходимо выделить следующие.
1. Если каждую варианту совокупности уменьшить или увеличить на одно и то же постоянное число, то дисперсия не изменится.
2. Если каждую варианту совокупности умножить или разделить на одно и то же постоянное число А, то дисперсия уменьшится или увеличится в А2 раз.
Среднее квадратичное отклонение (S) Наряду с дисперсией важнейшей характеристикой варьирования является среднее квадратичное отклонение - показатель, представляющий корень квадратный из дисперсии.
Эта величина в ряде случаев оказывается более удобной характеристикой варьирования чем дисперсия, так как выражается в тех же единицах, что и средняя арифметическая.
Коэффициент вариации. Рассмотренные до сих пор показатели изменчивости: размах, дисперсия, стандартное отклонение определяют вариацию в абсолютных единицах, имеют размерность такую же или в квадрате (для дисперсии), как и сама измеряемая величина. При описании распределений численности это удобно, но если есть необходимость сравнить показатели рассеяния двух распределений, данные которых имеют разные размерности, то естественно возникают затруднения. Такие же затруднения возникают иногда даже в тех случаях, когда измеряемые величины имеют одну и ту же размерность. Например, показатели рассеяния в распределениях количества выпавших осадков и роста людей вычислены в сантиметрах. Однако из того, что стандартное отклонение роста людей больше, чем стандартное отклонение выпавших осадков, не следует, что изменчивость в первом случае больше. Меры изменчивости при сравнении показательны лишь в соотношении со средними, от которых измеряют отклонения. Поэтому возникает необходимость в таком показателе рассеяния, который был бы безразмерным и указывал на изменчивость по отношению к среднему, относительно которого вычисляются отклонения. Наиболее часто используемым показателем, удовлетворяющим этим требованиям, является коэффициент вариации .
Из формулы видно, что на величину коэффициента вариации влияет как стандартное отклонение, так и среднее. Причем так как среднее стоит в знаменателе, при стремлении его к нулю коэффициент вариации становится неопределенным. Поэтому для распределений численностей со средними, близкими к нулю, использование коэффициента вариации в качестве показателя изменчивости нежелательно.
- Введение
- Раздел I. Введение в теорию вероятностей
- Понятие о случайном событии
- Классическое определение вероятности
- Относительная частота. Статистическое определение вероятности.
- Геометрическая вероятность
- Свойства вероятностей Сложение вероятностей несовместимых событий
- Умножение вероятностей
- Сложение вероятностей совместимых событий
- Формула полной вероятности
- Основные формулы комбинаторики
- Дискретные и непрерывные случайные величины. Понятие «случайные величины»
- Закон распределения случайной величины
- Теоретические распределения вероятностей
- Биномиальное распределение
- Распределение Пуассона
- Числовые характеристики дискретных случайных величин
- Нормальное распределение
- Вопросы для самопроверки:
- Раздел II. Основные понятия и термины биологической статистики Генеральная совокупность и выборка
- Непреднамеренный отбор. Метод последовательных номеров. Случайный и механический методы отбора
- Признаки и показатели
- Правила ранжирования
- Способы группировки первичных данных.
- Схемы (модели) научного исследования
- Однофакторная и многофакторная модель Контрольные и экспериментальные группы
- Метод автоконтроля
- Метод дублирования
- Метод последовательного пополнения групп
- Численность контрольных и экспериментальных групп
- Научные гипотезы
- Направленные гипотезы
- Статистические критерии
- Параметрические критерии
- Непараметрические критерии
- Уровни статистической значимости
- 1 Рода.
- Вопросы для самопроверки
- Раздел III. Статистические методы обработки экспериментальных данных
- Проверка гипотезы о законе распределения
- Χ2 Пирсона
- Описательные статистики Концепция сжатия экспериментальных данных
- Показатели центральной тенденции. Средние.
- Медиана
- Персентили
- Показатели изменчивости
- Стандартизованные данные
- Показатели асимметрии и эксцесса
- Эксцесс
- Работа с качественными переменными Количественная оценка результатов эксперимента.
- Вопросы для самопроверки:
- Сравнение двух независимых групп т критерий Стьюдента
- Критерии согласия для дисперсий
- U критерий Маана-Уитни
- Сравнение качественных признаков Критерий χ2
- Сравнение долей
- Точный тест Фишера
- Сравнение более двух независимых групп Однофакторный дисперсионный анализ Фишера
- Критерий Краскела-Уоллиса
- Сравнение двух зависимых групп Парный т критерий Стьюдента
- Парный критерий т – Вилкоксона
- Критерий x2r Фридмана
- Тест Мак-Немара
- Корреляционный анализ
- Вычисление и интерпретация параметров парной линейной корреляции
- Условия применения и ограничения корреляционно анализа
- Вычисление и интерпретация параметров парной линейной корреляции
- Измерение связи количественных признаков
- Измерение связи порядковых признаков
- Измерение связи номинальных признаков
- Относительный риск. Отношение шансов
- Статистическая оценка надежности параметров парной корреляции
- Частная корреляция
- Факторный анализ
- Вопросы для самопроверки:
- Регрессионный анализ
- Метод наименьших квадратов
- Выбор формы функциональной зависимости
- Применение парного линейного уравнения регрессии
- Корреляционно-регрессионные модели (крм) и их применение в анализе и прогнозе.
- Логистическая регрессия
- Анализ динамических изменений Применение метода наименьших квадратов при исследовании тенденции развития
- Анализ циклических изменений
- Метод обычных средних
- Метод корригирования средних
- Метод отношения фактических данных
- Ошибки, допускаемые при количественной характеристике сезонных колебаний
- Кластерный анализ
- Иерархическое дерево
- Меры расстояния
- Правила объединения или связи
- Метод k средних
- Выбор между параметрическими и непараметрическими тестами: легкая ситуация.
- Выбор между параметрическими и непараметрическими тестами: сложные случаи.
- Выбор между параметрическим и непараметрическим тестом: насколько это на самом деле влияет на результат?
- Одно или двухсторонняя p-оценка?
- Парный или непарный тест?
- Тест Фишера или хи-квадрат?
- Регрессия или корреляция?
- Вопросы для самопроверки:
- Раздел IV. Работа с программой easystatistics Общие сведения о программе EasyStatistics
- Создание новой базы данных
- Работа с файлами
- Копирование и вставка данных
- Работа с фильтрами
- Работа с переменными и строками
- Статистические методы Описательные статистики
- Частотный анализ
- Сравнение независимых выборок
- Сравнение связанных выборок
- Дисперсионный анализ
- Корреляционный анализ
- Множественная регрессия
- Проверка типа распределения эмпирических данных
- Вероятностный калькулятор
- Задания для самостоятельной работы с программой
- Список рекомендуемой литературы
- Граничные (критические) значения 2-критерия, соответствующие разным вероятностям допустимой ошибки и разным степеням свободы
- Критические значения коэффициентов корреляции для различных степеней свободы (n - 2) и разных вероятностей допустимых ошибок