Самостійна робота
Самостійна робота модуля передбачає:
Вивчення теми, що винесена на самостійне опрацювання;
Модульний тестовий контроль;
ІІІ. Модульна контрольна робота.
І. На самостійне опрацювання винесена тема модуля: Довірчий інтервал для оцінки дисперсії нормально розподіленої випадкової величини.
Зміст теми студентами конспектується в зошиті для практичних занять та входить в модульний тестовий контроль та модульну контрольну роботу. Максимальна кількість балів – 3б.
Методичні рекомендації
При підготовці даної теми повторити властивості нормально розподіленої величини, врахувати те, що точковою оцінкою для параметра σ є виправлене середнє квадратичне відхилення s, а це означає, що для знаходження меж інтервалу потрібно розв’язати рівняння: P{|σ −s|<δ}=γ P{s−δ <σ <s+δ}=γ.
Шуканий інтервал буде дорівнювати , де , .
Приклад. Кількісна ознака Х генеральної сукупності розподілена нормально. По вибірці обсягу n=16 знайдене виправлене середнє квадратичне відхилення . Знайти довірчий інтервал для дисперсії при надійності .
Розв’язання. Довірчий інтервал для дисперсії має вигляд: , де , .
Знаходимо значення (додаток 4). Маємо
.
.
Тоді довірчий інтервал матиме вигляд: .
ІІ. Модульний тестовий контроль передбачає тест, що складається з 11 тверджень. Підтвердження студентом істинності чи хибності кожного з тверджень приносить йому 1бал. Отже, максимальна кількість балів – 11.
Орієнтовні варіанти тверджень
Випадковий відбір здійснюється жеребкуванням.
В інтервальному варіаційному ряді не може бути менше 8 інтервалів.
Розмах вибірки – це різниця між найбільшою та найменшою варіантами.
Емпірична функція розподілу, побудована за інтервальним варіаційним рядом, є неперервною.
Для обчислення числових характеристик за дискретним варіаційним рядом з рівновіддаленими варіантами зручно користуватися методом умовних варіант.
Вибіркове середнє обчислюють за формулою: .
- виправлена дисперсія.
Нехай дано вибірку 1, 2, 2, 3, 4, 5, 6. Тоді хв=3,29
У модального інтервалу найбільша накопичена частота.
Мода та медіана, знайдені за інтервальним варіаційним рядом, збігаються.
Інтервальна оцінка невідомого параметра визначається декількома числами.
ІІІ. Модульна контрольна робота передбачає п’ять завдань, правильний результат якого оцінюється в 1 бал. Отже, максимальна кількість балів за модульну контрольну роботу – 5.
За вибіркою А побудувати дискретний варіаційний ряд, а за вибіркою В – інтервальний варіаційний ряд.
За вибіркою В побудувати емпіричну функцію розподілу, її графік, гістограму відносних частот.
За вибіркою А (дискретний ряд) обчислити числові характеристики.
За вибіркою В (інтервальний ряд) обчислити числові характеристики.
За вибіркою А знайти надійні інтервали для математичного сподівання та дисперсії при рівні значущості
Орієнтовний варіант завдання
Вибірка А: 1,5,4,6,8,4,5,1,1,2,3,4,5,7,7,8,8,1,4,14
Вибірка В (кількість інтервалів 6):
10,11,25,23,15,15,14,17,15,33,37,36,25,14,10,11,15,12,13,32,31,30,30,24,35,35,26,28,21,26.
Індивідуальні варіанти завдань для кожного студента знаходяться в додатку 8. Порядковий номер прізвища студента в списку групи визначає номер варіанта індивідуального завдання.
- Модульний план
- Розподіл балів за виконані роботи
- Критерії оцінювання знань, вмінь та навичок студентів Лекційні заняття
- Оцінювання самостійної та індивідуальної роботи
- Модуль і. Теорія ймовірностей Змістовний модуль 1. Теоретичні основи теорії ймовірностей та комбінаторики
- Тема 1. Основні поняття теорії ймовірностей
- 1.1. Поняття "випробування" та "подія". Предмет теорії ймовірностей. Коротка історична довідка.
- Класифікація випадкових подій
- Алгебра випадкових подій
- Властивості операцій над подіями
- Запитання для самоконтролю
- Тема 2. Основні поняття та принципи комбінаторики
- Сполуки без повторень елементів
- Сполуки з повторенням елементів
- Основні принципи комбінаторики
- Запитання для самоконтролю
- Тема 3. Ймовірність подій. Основні теореми теорії ймовірностей
- Класичне означення ймовірності
- Властивості ймовірності
- 3.2. Відносна частота. Статистичне означення ймовірності.
- 3.3. Геометричне означення ймовірності
- Залежні та незалежні події. Умовна ймовірність. Теореми множення ймовірностей.
- Теорема множення ймовірностей залежних подій
- 3.5. Теореми додавання ймовірностей Теорема додавання ймовірностей несумісних подій
- 3.6. Ймовірність настання хоча б однієї події
- Теорема
- Запитання для самоконтролю
- Тема 4. Формула повної ймовірності. Формула Бейєса.
- 4.1. Формула повної ймовірності
- 4.2. Формула Бейєса
- Запитання для самоконтролю
- Тема 5. Послідовні незалежні випробування
- 5.1.Схема повторних незалежних випробувань Бернуллі.
- 5.2. Граничні теореми у схемі Бернуллі
- 5.3. Ймовірність відхилення відносної частоти від сталої ймовірності в незалежних випробуваннях
- Запитання для самоконтролю
- Практичні заняття Практичне заняття №1
- Практичне заняття №2
- Практичне заняття №3
- Практичне заняття №4
- Практичне заняття №5
- Самостійна робота
- Рівень а
- Рівень б
- Рівень в
- Рівень а
- Рівень б
- Рівень в
- Теми рефератів
- Задачі для самоперевірки
- Змістовний модуль 2. Випадкові величини
- Тема 6. Види випадкових величин та способи їх задання
- 6.1. Поняття випадкової величини. Закони розподілу випадкових величин.
- 6.1.1. Дискретні випадкові величини
- Біноміальний розподіл
- Геометричний розподіл
- Числові характеристики двв
- 6.1.2. Неперервні випадкові величини. Щільність розподілу.
- Основні закони розподілу неперервних величин
- Рівномірний розподіл
- Показниковий розподіл
- Нормальний розподіл
- Числові характеристики ннв
- Правило трьох сигм
- 6.2. Закон великих чисел та центральна гранична теорема
- Теорема
- Запитання для самоконтролю
- Практичны заняття Практичне заняття №6
- Практичне заняття №9
- Самостійна робота
- Числові характеристики основних розподілів
- Рівень а
- Рівень б
- Рівень в
- Задача 1
- Задача 2
- 10. Неперервна випадкова величина задана інтегральною функцією розподілу:
- Задачі для самоконтролю
- Модуль іі. Математична статистика Змістовний модуль 3. Теоретичні основи математичної статистики
- Тема 7. Предмет та задачі математичної статистики
- Види та способи відбору
- Первинна обробка даних
- Згрупований розподіл накопиченої частоти
- Розподіл щільності частоти і щільності відносної частоти
- Емпірична функція розподілу
- Властивості емпіричної функції розподілу
- Запитання для самоконтролю
- Тема 8. Статистичні оцінки параметрів розподілу
- 8.1. Числові характеристики статистичного розподілу
- Алгоритм методу добутків
- 8.2. Точкові та інтервальні оцінки параметрів розподілу
- Точкова оцінка математичного сподівання
- Точкова оцінка дисперсії. Виправлена дисперсія
- Інтервальні оцінки для математичного сподівання
- Знаходження об’єму вибірки
- Запитання для самоконтролю
- Практичні заняття Практичне заняття №10
- Практичне заняття №11
- Практичне заняття №12-13
- Практичне заняття №14
- Самостійна робота
- Змістовний модуль 4. Статистична перевірка гіпотез. Елементи теорії кореляції і дисперсійного аналізу
- Тема 9. Статистична перевірка гіпотез
- Статистичні гіпотези та їх класифікація
- 9.2. Статистичні критерії перевірки нульової гіпотези
- 9.3. Перевірка гіпотези про закон розподілу. Критерій згоди Пірсона.
- Перевірка гіпотези про рівність середніх двох сукупностей
- Перевірка гіпотези про рівність часток ознаки двох сукупностей
- Перевірка гіпотези про рівність дисперсій двох сукупностей
- Перевірка гіпотез про числові значення параметрів
- Запитання для самоконтролю
- Тема 10. Елементи теорії кореляції
- Запитання для самоконтролю
- Тема 11. Поняття дисперсійного аналізу. Однофакторний дисперсійний аналіз
- Запитання для самоконтролю
- Практичні заняття
- Практичне заняття №17
- Практичне заняття №18
- Самостійна робота
- Методичні рекомендації
- Список використаної та рекомендованої літератури
- Додатки
- Математична довідка
- Властивості функції
- V. Правила інтегрування функцій
- Варіанти завдань для самостійної індивідуальнї роботи