3.3. Геометричне означення ймовірності
Щоб подолати недолік класичного означення ймовірності, яке полягає у тому, що його не можна застосувати до випробування з нескінченою кількістю елементарних подій, вводять геометричну ймовірність – ймовірність попадання точки в область.
Нехай – деяка область на прямій, площині або в просторі, а А – деяка частина області . В області навмання вибирають точку, вважаючи, що вибір точок області рівноможливий. Ймовірність того, що точка належить А, визначається рівністю
,
де – міра (довжина, площа, об’єм, час) А, .
Задача 11. На аудиокасеті записані концерти трьох співаків: першого – протягом 40 хв. звучання, другого – протягом 30 хв., третього – протягом 20 хв. Запис перемотується і навмання включається. Яка ймовірність того, що звучить пісня у виконанні другого співака?
Розв’язання Випробування – включається касета; подія А – звучить пісня у виконанні другого співака.
Час звучання запису Т( )=90хв., час звучання другого співака Т(А)=30хв. За формулою (3) маємо .
Відповідь: .
- Модульний план
- Розподіл балів за виконані роботи
- Критерії оцінювання знань, вмінь та навичок студентів Лекційні заняття
- Оцінювання самостійної та індивідуальної роботи
- Модуль і. Теорія ймовірностей Змістовний модуль 1. Теоретичні основи теорії ймовірностей та комбінаторики
- Тема 1. Основні поняття теорії ймовірностей
- 1.1. Поняття "випробування" та "подія". Предмет теорії ймовірностей. Коротка історична довідка.
- Класифікація випадкових подій
- Алгебра випадкових подій
- Властивості операцій над подіями
- Запитання для самоконтролю
- Тема 2. Основні поняття та принципи комбінаторики
- Сполуки без повторень елементів
- Сполуки з повторенням елементів
- Основні принципи комбінаторики
- Запитання для самоконтролю
- Тема 3. Ймовірність подій. Основні теореми теорії ймовірностей
- Класичне означення ймовірності
- Властивості ймовірності
- 3.2. Відносна частота. Статистичне означення ймовірності.
- 3.3. Геометричне означення ймовірності
- Залежні та незалежні події. Умовна ймовірність. Теореми множення ймовірностей.
- Теорема множення ймовірностей залежних подій
- 3.5. Теореми додавання ймовірностей Теорема додавання ймовірностей несумісних подій
- 3.6. Ймовірність настання хоча б однієї події
- Теорема
- Запитання для самоконтролю
- Тема 4. Формула повної ймовірності. Формула Бейєса.
- 4.1. Формула повної ймовірності
- 4.2. Формула Бейєса
- Запитання для самоконтролю
- Тема 5. Послідовні незалежні випробування
- 5.1.Схема повторних незалежних випробувань Бернуллі.
- 5.2. Граничні теореми у схемі Бернуллі
- 5.3. Ймовірність відхилення відносної частоти від сталої ймовірності в незалежних випробуваннях
- Запитання для самоконтролю
- Практичні заняття Практичне заняття №1
- Практичне заняття №2
- Практичне заняття №3
- Практичне заняття №4
- Практичне заняття №5
- Самостійна робота
- Рівень а
- Рівень б
- Рівень в
- Рівень а
- Рівень б
- Рівень в
- Теми рефератів
- Задачі для самоперевірки
- Змістовний модуль 2. Випадкові величини
- Тема 6. Види випадкових величин та способи їх задання
- 6.1. Поняття випадкової величини. Закони розподілу випадкових величин.
- 6.1.1. Дискретні випадкові величини
- Біноміальний розподіл
- Геометричний розподіл
- Числові характеристики двв
- 6.1.2. Неперервні випадкові величини. Щільність розподілу.
- Основні закони розподілу неперервних величин
- Рівномірний розподіл
- Показниковий розподіл
- Нормальний розподіл
- Числові характеристики ннв
- Правило трьох сигм
- 6.2. Закон великих чисел та центральна гранична теорема
- Теорема
- Запитання для самоконтролю
- Практичны заняття Практичне заняття №6
- Практичне заняття №9
- Самостійна робота
- Числові характеристики основних розподілів
- Рівень а
- Рівень б
- Рівень в
- Задача 1
- Задача 2
- 10. Неперервна випадкова величина задана інтегральною функцією розподілу:
- Задачі для самоконтролю
- Модуль іі. Математична статистика Змістовний модуль 3. Теоретичні основи математичної статистики
- Тема 7. Предмет та задачі математичної статистики
- Види та способи відбору
- Первинна обробка даних
- Згрупований розподіл накопиченої частоти
- Розподіл щільності частоти і щільності відносної частоти
- Емпірична функція розподілу
- Властивості емпіричної функції розподілу
- Запитання для самоконтролю
- Тема 8. Статистичні оцінки параметрів розподілу
- 8.1. Числові характеристики статистичного розподілу
- Алгоритм методу добутків
- 8.2. Точкові та інтервальні оцінки параметрів розподілу
- Точкова оцінка математичного сподівання
- Точкова оцінка дисперсії. Виправлена дисперсія
- Інтервальні оцінки для математичного сподівання
- Знаходження об’єму вибірки
- Запитання для самоконтролю
- Практичні заняття Практичне заняття №10
- Практичне заняття №11
- Практичне заняття №12-13
- Практичне заняття №14
- Самостійна робота
- Змістовний модуль 4. Статистична перевірка гіпотез. Елементи теорії кореляції і дисперсійного аналізу
- Тема 9. Статистична перевірка гіпотез
- Статистичні гіпотези та їх класифікація
- 9.2. Статистичні критерії перевірки нульової гіпотези
- 9.3. Перевірка гіпотези про закон розподілу. Критерій згоди Пірсона.
- Перевірка гіпотези про рівність середніх двох сукупностей
- Перевірка гіпотези про рівність часток ознаки двох сукупностей
- Перевірка гіпотези про рівність дисперсій двох сукупностей
- Перевірка гіпотез про числові значення параметрів
- Запитання для самоконтролю
- Тема 10. Елементи теорії кореляції
- Запитання для самоконтролю
- Тема 11. Поняття дисперсійного аналізу. Однофакторний дисперсійний аналіз
- Запитання для самоконтролю
- Практичні заняття
- Практичне заняття №17
- Практичне заняття №18
- Самостійна робота
- Методичні рекомендації
- Список використаної та рекомендованої літератури
- Додатки
- Математична довідка
- Властивості функції
- V. Правила інтегрування функцій
- Варіанти завдань для самостійної індивідуальнї роботи