Перевірка гіпотези про рівність середніх двох сукупностей
Порівняння середніх двох сукупностей має важливе практичне значення. На практиці часто зустрічається випадок, коли середній результат однієї серії експерименту відрізняється від середнього результату другої серії. При цьому постає питання, чи можна пояснити таку різницю середніх випадковими неминучими помилками експерименту чи вона викликана деякими закономірностями.
В психолого-педагогічних дослідженнях задача порівняння середніх часто виникає при контролі, наприклад, рівня знань учнів, що навчалися за різними навчальними програмами або методиками, або в різних умовах і т.і.
Сформулюємо задачу.
Нехай маємо дві сукупності, що характеризуються генеральними середніми і і відомими дисперсіями і необхідно перевірити гіпотезу Н0 про рівність генеральних середніх, тобто Н0 : = . Для перевірки гіпотези Н0 із цих сукупностей взяті дві незалежні вибірки об’ємів п1 і п2 , по яких знайдено вибіркові середні і та вибіркові дисперсії і .
При достатньо великих об’ємах вибірок вибіркові середні і мають наближено нормальний закон розподілу, відповідно і .
У випадку справедливості гіпотези Н0 різниця – має нормальний закон розподілу з математичним сподіванням М( – )=М( )–М( )= – =0 і дисперсією (дисперсія різниці незалежних випадкових величин дорівнює сумі їх дисперсій, а дисперсія середньої п незалежних доданків в п раз менша дисперсії кожного).
Тому при виконанні гіпотези Н0 статистика
(28)
має стандартний нормальний розподіл .
У випадку альтернативної гіпотези Н1: > (або Н1: ) вибирають односторонню критичну область і критичне значення статистики
(29)
а при конкуруючій гіпотезі Н1: вибирають двосторонню критичну область і критичне значення статистики
(30)
Якщо спостережуване значення статистики t більше за t кр, що визначене на рівні значимості ( за абсолютною величиною), тобто t > t кр, то гіпотеза Н0 відхиляється. Якщо t t кр , то робиться висновок, що нульова гіпотеза не протирічить даним спостереження.
Приклад. Для перевірки ефективності нової методики навчання відібрано дві групи студентів. В першій групі чисельністю п1 =50 студентів, де застосовувалася нова методика, середній бал успішності складав =85 балів, у другій чисельністю п2 =70 студентів =78 балів. Попередньо встановлено, що дисперсії успішності в групах дорівнюють відповідно =100 і =74. На рівні значимості =0,05 потрібно з’ясувати вплив нової методики на середній бал успішності студентів.
Розв’язання
Припустимо, що середній бал успішності студентів при викладанні предметів за новою і старою методикою однакові, тобто Н0 : = .
Тоді Н1: > або Н2: ( в даній задачі краще взяти Н1, так як її справедливість означає ефективність застосування нової методики навчання).
За формулою (28) маємо .
При альтернативній гіпотезі Н1 критичне значення статистики знаходиться з умови (29), тобто , звідки за таблицями значень функції Лапласа t кр =t 0,9=1,64, а при Н2 – умова (30), тобто , звідки t кр =t 0,95=1,96.
Оскільки t > t кр (при будь-якій із взятих конкуруючих гіпотез), то гіпотеза Н0 відхиляється, тобто на 5%-ому рівні значимості можна зробити висновок, що нова методика дозволяє підвищити середній бал студентів.
Якщо припустити, що розподіл випадкових величин Х та У в кожній сукупності має нормальний закон розподілу, то тоді, якщо дисперсії і відомі, то перевірка гіпотез проводиться так, як описано вище, не тільки для великих але й для малих по об’єму вибірок. Якщо ж дисперсії і невідомі, але рівні, тобто = = , то в якості невідомої величини можна взяти її оцінку – виправлену вибіркову дисперсію
або .
Однак кращою оцінкою для буде дисперсія змішаної сукупності об’єму п1 + п2, тобто
,
а оцінкою дисперсії різниці незалежних вибіркових середніх буде .
Доведено, що у випадку справедливості гіпотези Н0, статистика
(31)
має t-розподіл Стьюдента з k=п1+ п2-2 ступенями вільності. Тому критичне значення статистики t знаходиться за формулами (29) і (30) в залежності від виду критичної області, в яких замість функції Лапласа Ф(t) береться функція ( t; k) для розподілу Стьюдента при k=п1+п2-2, тобто (t;k)=1-. при цьому зберігається те саме правило відхиляння (приймання) гіпотези: гіпотеза Н0 відхиляється на рівні значимості , якщо t > t 1-2;k, (у випадку односторонньої критичної області) або t > t 1-;k (у випаду двосторонньої критичної області). У протилежному випадку гіпотеза Н0 приймається.
Зауваження. Якщо дисперсії = невідомі і не передбачається, що вони рівні, то статистика, обрахована за формулою (31) також має t‑розподіл Стьюдента, однак відповідне йому число ступенів вільності визначається наближено і складніше.
Приклад. Зроблено дві вибірки врожаю пшениці: при своєчасному зборі врожаю і зборі з деяким запізненням. У першому випадку при спостереженні 8 ділянок вибіркова середня урожаю склала 16,2ц/га, а середнє квадратичне відхилення – 3,2ц/га; у другому випадку при спостереженні 9 ділянок ті ж характеристики дорівнювали 13,9ц/га і 2,1ц/га. На рівні значимості =0,05 з’ясувати вплив своєчасного збору врожаю на середнє значення урожайності.
Розв’язання
Припустимо, що середнє значення урожайності при своєчасному зборі урожаю і з запізненням рівні, тобто Н0 : = .
Тоді Н1: > , що означає значний вплив на урожайність строків збору. За формулою (31) , k=8+9-2=15 з умови (t;k)=1-2=1-2·0,05=0,9. Звідси за таблицею значень критерію Стьюдента (додаток 5) t0,9;15=1,75. Оскільки t0,9;15=1,75, то гіпотеза Н0 приймається. Це означає, що дані які ми маємо на 5%-ому рівні значимості, не дозволяють вважати, що деяке спізнення у строках збору суттєво впливає на величину урожаю.
Порівняння середніх декількох сукупностей буде розглянуте у темі 11.
- Модульний план
- Розподіл балів за виконані роботи
- Критерії оцінювання знань, вмінь та навичок студентів Лекційні заняття
- Оцінювання самостійної та індивідуальної роботи
- Модуль і. Теорія ймовірностей Змістовний модуль 1. Теоретичні основи теорії ймовірностей та комбінаторики
- Тема 1. Основні поняття теорії ймовірностей
- 1.1. Поняття "випробування" та "подія". Предмет теорії ймовірностей. Коротка історична довідка.
- Класифікація випадкових подій
- Алгебра випадкових подій
- Властивості операцій над подіями
- Запитання для самоконтролю
- Тема 2. Основні поняття та принципи комбінаторики
- Сполуки без повторень елементів
- Сполуки з повторенням елементів
- Основні принципи комбінаторики
- Запитання для самоконтролю
- Тема 3. Ймовірність подій. Основні теореми теорії ймовірностей
- Класичне означення ймовірності
- Властивості ймовірності
- 3.2. Відносна частота. Статистичне означення ймовірності.
- 3.3. Геометричне означення ймовірності
- Залежні та незалежні події. Умовна ймовірність. Теореми множення ймовірностей.
- Теорема множення ймовірностей залежних подій
- 3.5. Теореми додавання ймовірностей Теорема додавання ймовірностей несумісних подій
- 3.6. Ймовірність настання хоча б однієї події
- Теорема
- Запитання для самоконтролю
- Тема 4. Формула повної ймовірності. Формула Бейєса.
- 4.1. Формула повної ймовірності
- 4.2. Формула Бейєса
- Запитання для самоконтролю
- Тема 5. Послідовні незалежні випробування
- 5.1.Схема повторних незалежних випробувань Бернуллі.
- 5.2. Граничні теореми у схемі Бернуллі
- 5.3. Ймовірність відхилення відносної частоти від сталої ймовірності в незалежних випробуваннях
- Запитання для самоконтролю
- Практичні заняття Практичне заняття №1
- Практичне заняття №2
- Практичне заняття №3
- Практичне заняття №4
- Практичне заняття №5
- Самостійна робота
- Рівень а
- Рівень б
- Рівень в
- Рівень а
- Рівень б
- Рівень в
- Теми рефератів
- Задачі для самоперевірки
- Змістовний модуль 2. Випадкові величини
- Тема 6. Види випадкових величин та способи їх задання
- 6.1. Поняття випадкової величини. Закони розподілу випадкових величин.
- 6.1.1. Дискретні випадкові величини
- Біноміальний розподіл
- Геометричний розподіл
- Числові характеристики двв
- 6.1.2. Неперервні випадкові величини. Щільність розподілу.
- Основні закони розподілу неперервних величин
- Рівномірний розподіл
- Показниковий розподіл
- Нормальний розподіл
- Числові характеристики ннв
- Правило трьох сигм
- 6.2. Закон великих чисел та центральна гранична теорема
- Теорема
- Запитання для самоконтролю
- Практичны заняття Практичне заняття №6
- Практичне заняття №9
- Самостійна робота
- Числові характеристики основних розподілів
- Рівень а
- Рівень б
- Рівень в
- Задача 1
- Задача 2
- 10. Неперервна випадкова величина задана інтегральною функцією розподілу:
- Задачі для самоконтролю
- Модуль іі. Математична статистика Змістовний модуль 3. Теоретичні основи математичної статистики
- Тема 7. Предмет та задачі математичної статистики
- Види та способи відбору
- Первинна обробка даних
- Згрупований розподіл накопиченої частоти
- Розподіл щільності частоти і щільності відносної частоти
- Емпірична функція розподілу
- Властивості емпіричної функції розподілу
- Запитання для самоконтролю
- Тема 8. Статистичні оцінки параметрів розподілу
- 8.1. Числові характеристики статистичного розподілу
- Алгоритм методу добутків
- 8.2. Точкові та інтервальні оцінки параметрів розподілу
- Точкова оцінка математичного сподівання
- Точкова оцінка дисперсії. Виправлена дисперсія
- Інтервальні оцінки для математичного сподівання
- Знаходження об’єму вибірки
- Запитання для самоконтролю
- Практичні заняття Практичне заняття №10
- Практичне заняття №11
- Практичне заняття №12-13
- Практичне заняття №14
- Самостійна робота
- Змістовний модуль 4. Статистична перевірка гіпотез. Елементи теорії кореляції і дисперсійного аналізу
- Тема 9. Статистична перевірка гіпотез
- Статистичні гіпотези та їх класифікація
- 9.2. Статистичні критерії перевірки нульової гіпотези
- 9.3. Перевірка гіпотези про закон розподілу. Критерій згоди Пірсона.
- Перевірка гіпотези про рівність середніх двох сукупностей
- Перевірка гіпотези про рівність часток ознаки двох сукупностей
- Перевірка гіпотези про рівність дисперсій двох сукупностей
- Перевірка гіпотез про числові значення параметрів
- Запитання для самоконтролю
- Тема 10. Елементи теорії кореляції
- Запитання для самоконтролю
- Тема 11. Поняття дисперсійного аналізу. Однофакторний дисперсійний аналіз
- Запитання для самоконтролю
- Практичні заняття
- Практичне заняття №17
- Практичне заняття №18
- Самостійна робота
- Методичні рекомендації
- Список використаної та рекомендованої літератури
- Додатки
- Математична довідка
- Властивості функції
- V. Правила інтегрування функцій
- Варіанти завдань для самостійної індивідуальнї роботи