Практичні заняття Практичне заняття №10
Тема: Основні поняття математичної статистики. Статистичний розподіл.
Мета: Cформувати в студентів уявлення про основні поняття математичної статистики, навчити будувати дискретний та інтервальний варіаційні ряди.
План Заняття
Предмет та основні задачі математичної статистики.
Види та способи відбору. Генеральна та вибіркова сукупності.
Первинна обробка даних. Дискретний та інтервальний варіаційні ряди.
Рекомендована Література
Теорія ймовірностей та математична статистика: Навч. посібник для студентів вузів/ В.В. Барковський, Н.В. Барковська Н.В., О.К. Лопатін. 3-є вид. перероб. і доп.– К.: Центр навчальної літератури, 2002. С. 165-218.
Математика для психологов: Учебник /А.Н. Киричевец, Е.В. Шикин, А.Г. Дьячков / Под ред. А.Н. Киричевца. – М.:Флинта: Московский психолого-социальный институт, 2003. С. 281-298.
Теория вероятностей и математическая статистика: Учебник для студентов вузов/ Н.Ш. Кремер. -3-е изд., перераб. и доп.- М.: Юнити, 2007. – С. 267-284.
Теорія ймовірностей...від найпростішого: Навчальний посібник для студентів вузів/ О. Д. Валь, К.С. Королюк, С.В. Мельничук. –Чернівці: Книги-ХХІ, 2004.- С. 129-142.
Теория вероятностей и математическая статистика: Учебник для студентов вузов/ К.В. Балдин, В.Н. Башлыков, А.В. Рукосуев. –М.: Даликов и К, 2008. - С. 206-223.
Теория вероятностей и математическая статистика: Учебное пособие для студентов вузов/ Ред. В.И. Єрмаков. –М.: Инфра-М, 2008. - С. 74-76с.
Теория вероятностей и математическая статистика: примеры и задачи: Учебное пособие для студентов вузов/ И.В. Белько, Г.П. Свирид.-3-е изд.,стереот.–М.: Новое знание, 2007. С.99-106.
Посібник з теорії ймовірності та математичної статистики: Навч. посібник для вузів / М.К. Бугір. – Тернопіль: Підручники і посібники, 1998. - С. 106-107.
Основи теорії ймовірностей та математичної статистики: Навчальний посібник для студентів/ В.П. Бабак, А.Я. Білецький, О.П. Приставка, П.О. Приставка.-К.: КВІЦ.,2003. - С. 209-213.
Прикладные задачи теории вероятности/ Е.С. Вентцель, Л.А. Овчаров. –М.: Радио и связь, 1983. - С. 430-439.
Математична статистика та задачі оптимізації в алгоритмах і програмах: Навчальний посібник для студентів вузів/ Ю.А.Толбатов. –К.: Вища школа, 1994. - С. 88-89.
Математична статистика: Навчальний посібник для студентів вузів/ В.К. Гаркавий, В.В. Ярова. –К.: Профессионал, 2004 -С. 6-20, 95-136.
Статистика (з програмованою формою контролю знань): математична статистика. Загальна теорія статистики: Навчальний посібник для студентів вузів/ А.Т. Опря. -К.: Центр навчальної літератури, 2005. - С. 22-27.
Практикум з математичної статистики: Навчальний посібник для студентів вузів/ А.Т. Мармоза. –К.: Кондор, 2004. - С. 5-27.
Методичні вказівки
Пояснити, що таке статистика, математична статистика. Виділити види статистик (описова, пояснювальна), охарактеризувати кожен з цих видів. Звернути увагу на такі поняття як статистичний метод, статистичне спостереження. Дати означення генеральної сукупності, вибіркової сукупності, варіанти. Перелічити три способи відбору одиниць сукупності (випадковий, механічний, типовий) і охарактеризувати кожен з цих способів.
Вивчити поняття дискретного та варіаційного ряду. При яких умовах будують дискретний варіаційний ряд, а при яких – інтервальний. Звернути увагу на такі поняття частота, накопичена частота, відносна частота, відносна накопичена частота. Описати алгоритм побудови дискретного та інтервального варіаційних рядів.
Задачі для самоконтролю
Задача 1. Дано вибірку: 4, 2, 3, 2, 5, 4, 4, 5, 8, 7, 1, 5, 5, 5, 6, 7, 5, 4, 1, 2, 2, 3, 2, 5, 5, 6, 7, 6, 4, 6. Необхідно побудувати дискретний варіаційний ряд. Відповідь:
хі | ki | F | ki/n | F/n |
1 | 2 | 2 | 0.067 | 0.067 |
2 | 5 | 7 | 0.167 | 0.233 |
3 | 2 | 9 | 0.067 | 0.3 |
4 | 5 | 14 | 0.167 | 0.467 |
5 | 8 | 22 | 0.267 | 0.733 |
6 | 4 | 26 | 0.133 | 0.867 |
7 | 3 | 29 | 0.1 | 0.967 |
8 | 1 | 30 | 0.033 | 1,000 |
Всього | 30 |
| 1,000 |
|
Задача 2. Дано вибірку: 50, 68, 61, 34, 8, 98, 88, 33, 15, 71, 42, 47, 0, 59, 77, 92, 55, 51, 23, 53, 59, 60, 85, 49, 56, 40, 42, 68, 63, 82, 52, 54, 63, 31, 86, 34, 16, 24, 72, 53, 46, 52, 50, 29, 75, 12, 34, 72, 33, 52. Необхідно побудувати інтервальний варіаційний ряд з шириною інтервалу h=10. Відповідь:
Інтервал | середина інтервалу xi | частота ki | накопичена частота Fi | відносна частота ki/n | відносна накопичена частота Fi/n |
[0;10) | 5 | 2 | 2 | 0,04 | 0,04 |
[10;20) | 15 | 3 | 5 | 0,06 | 0,1 |
[20;30) | 25 | 3 | 8 | 0,06 | 0,16 |
[30;40) | 35 | 6 | 14 | 0,12 | 0,28 |
[40;50) | 45 | 6 | 20 | 0,12 | 0,4 |
[50;60) | 55 | 13 | 33 | 0,26 | 0,66 |
[60;70) | 65 | 6 | 39 | 0,12 | 0,78 |
[70;80) | 75 | 5 | 44 | 0,1 | 0,88 |
[80;90) | 85 | 4 | 48 | 0,08 | 0,96 |
[90;100) | 95 | 2 | 50 | 0,04 | 1,00 |
Всього |
| 50 |
| 1,00 |
|
- Модульний план
- Розподіл балів за виконані роботи
- Критерії оцінювання знань, вмінь та навичок студентів Лекційні заняття
- Оцінювання самостійної та індивідуальної роботи
- Модуль і. Теорія ймовірностей Змістовний модуль 1. Теоретичні основи теорії ймовірностей та комбінаторики
- Тема 1. Основні поняття теорії ймовірностей
- 1.1. Поняття "випробування" та "подія". Предмет теорії ймовірностей. Коротка історична довідка.
- Класифікація випадкових подій
- Алгебра випадкових подій
- Властивості операцій над подіями
- Запитання для самоконтролю
- Тема 2. Основні поняття та принципи комбінаторики
- Сполуки без повторень елементів
- Сполуки з повторенням елементів
- Основні принципи комбінаторики
- Запитання для самоконтролю
- Тема 3. Ймовірність подій. Основні теореми теорії ймовірностей
- Класичне означення ймовірності
- Властивості ймовірності
- 3.2. Відносна частота. Статистичне означення ймовірності.
- 3.3. Геометричне означення ймовірності
- Залежні та незалежні події. Умовна ймовірність. Теореми множення ймовірностей.
- Теорема множення ймовірностей залежних подій
- 3.5. Теореми додавання ймовірностей Теорема додавання ймовірностей несумісних подій
- 3.6. Ймовірність настання хоча б однієї події
- Теорема
- Запитання для самоконтролю
- Тема 4. Формула повної ймовірності. Формула Бейєса.
- 4.1. Формула повної ймовірності
- 4.2. Формула Бейєса
- Запитання для самоконтролю
- Тема 5. Послідовні незалежні випробування
- 5.1.Схема повторних незалежних випробувань Бернуллі.
- 5.2. Граничні теореми у схемі Бернуллі
- 5.3. Ймовірність відхилення відносної частоти від сталої ймовірності в незалежних випробуваннях
- Запитання для самоконтролю
- Практичні заняття Практичне заняття №1
- Практичне заняття №2
- Практичне заняття №3
- Практичне заняття №4
- Практичне заняття №5
- Самостійна робота
- Рівень а
- Рівень б
- Рівень в
- Рівень а
- Рівень б
- Рівень в
- Теми рефератів
- Задачі для самоперевірки
- Змістовний модуль 2. Випадкові величини
- Тема 6. Види випадкових величин та способи їх задання
- 6.1. Поняття випадкової величини. Закони розподілу випадкових величин.
- 6.1.1. Дискретні випадкові величини
- Біноміальний розподіл
- Геометричний розподіл
- Числові характеристики двв
- 6.1.2. Неперервні випадкові величини. Щільність розподілу.
- Основні закони розподілу неперервних величин
- Рівномірний розподіл
- Показниковий розподіл
- Нормальний розподіл
- Числові характеристики ннв
- Правило трьох сигм
- 6.2. Закон великих чисел та центральна гранична теорема
- Теорема
- Запитання для самоконтролю
- Практичны заняття Практичне заняття №6
- Практичне заняття №9
- Самостійна робота
- Числові характеристики основних розподілів
- Рівень а
- Рівень б
- Рівень в
- Задача 1
- Задача 2
- 10. Неперервна випадкова величина задана інтегральною функцією розподілу:
- Задачі для самоконтролю
- Модуль іі. Математична статистика Змістовний модуль 3. Теоретичні основи математичної статистики
- Тема 7. Предмет та задачі математичної статистики
- Види та способи відбору
- Первинна обробка даних
- Згрупований розподіл накопиченої частоти
- Розподіл щільності частоти і щільності відносної частоти
- Емпірична функція розподілу
- Властивості емпіричної функції розподілу
- Запитання для самоконтролю
- Тема 8. Статистичні оцінки параметрів розподілу
- 8.1. Числові характеристики статистичного розподілу
- Алгоритм методу добутків
- 8.2. Точкові та інтервальні оцінки параметрів розподілу
- Точкова оцінка математичного сподівання
- Точкова оцінка дисперсії. Виправлена дисперсія
- Інтервальні оцінки для математичного сподівання
- Знаходження об’єму вибірки
- Запитання для самоконтролю
- Практичні заняття Практичне заняття №10
- Практичне заняття №11
- Практичне заняття №12-13
- Практичне заняття №14
- Самостійна робота
- Змістовний модуль 4. Статистична перевірка гіпотез. Елементи теорії кореляції і дисперсійного аналізу
- Тема 9. Статистична перевірка гіпотез
- Статистичні гіпотези та їх класифікація
- 9.2. Статистичні критерії перевірки нульової гіпотези
- 9.3. Перевірка гіпотези про закон розподілу. Критерій згоди Пірсона.
- Перевірка гіпотези про рівність середніх двох сукупностей
- Перевірка гіпотези про рівність часток ознаки двох сукупностей
- Перевірка гіпотези про рівність дисперсій двох сукупностей
- Перевірка гіпотез про числові значення параметрів
- Запитання для самоконтролю
- Тема 10. Елементи теорії кореляції
- Запитання для самоконтролю
- Тема 11. Поняття дисперсійного аналізу. Однофакторний дисперсійний аналіз
- Запитання для самоконтролю
- Практичні заняття
- Практичне заняття №17
- Практичне заняття №18
- Самостійна робота
- Методичні рекомендації
- Список використаної та рекомендованої літератури
- Додатки
- Математична довідка
- Властивості функції
- V. Правила інтегрування функцій
- Варіанти завдань для самостійної індивідуальнї роботи