Критерий Найквиста
Этот критерий позволяет по годографу амплитудно-фазовой характеристики разомкнутой системы судить об устойчивости ее в замкнутом состоянии. Предполагая, что степень полинома частотной характеристики разомкнутой системы:
Предполагают, что степень полинома в числителе меньше, чем степень полинома знаменателя частотной характеристики разомкнутой системы, а также, что указанные полиномы не имеют общих корней с неотрицательной вещественной частью. Критерий Найквиста формулируется следующим образом:
Система неустойчивая в разомкнутом состоянии и имеющая m корней с положительной вещественной частью будет устойчива в замкнутом состоянии если амплитудно-фазовая характеристика охватывает точку (-1,) в направлении против хода часовой стрелкираз.
Пояснение:
1. Формулировка критерия означает, что угол поворота вектора проведенного из точки (-1, ) характеристики при возрастании частоты от 0 до ∞ должен быть равен .
В частном случае если разомкнутая система устойчива (т.е. m=0), то критерий Найквиста наиболее прост:
Система устойчива в разомкнутом состоянии будет устойчива в замкнутом состоянии, если АФХ не охватывает точки (-1,).
Пример: 1.
(-1, )
m=0
Статическая САУ в замкнутом состоянии не устойчива.
2.
(-1, )
m=0
Статическая САУ в замкнутом состоянии устойчива.
- Глава 5. Основы теории управления. Основы Теории Управления
- Фундаментальные принципы управления.
- Фазовые пространства
- 5.1. Основные понятия и определения
- 5.2. Процесс управления динамической системой.
- 5.3. Примеры расчетов по методам фазовых траекторий в двумерном пространстве состояний
- 6. Основные языки представления моделей объектов управления в пространстве состояний.
- 6.1. Аналитические модели оу
- 6.2. Примеры аналитических моделей физических детерминированных линейных стационарных систем:
- 6.3. Топологические (графические, структурные) модели систем
- Замечание:
- 6.3. Задачи
- 7. Линейные системы управления.
- 7.1. Принцип суперпозиции
- 7.2. Описание су линейными дифференциальными и алгебраическими уравнениями.
- 7.3 Описание линейных стационарных систем уравнениями с передаточными функциями.
- 7.4 Частотные характеристики сау
- Элементарные звенья управления
- Эквивалентные преобразования структурных схем.
- Весовая функция систем управления.
- Локальные свойства звеньев, охваченных обратной связью
- Анализ линейных систем управления
- Анализ устойчивости линейных сау
- Основные понятия теории устойчивости
- Простейшие типы точек покоя
- Задача исследования устойчивости систем имеет цель:
- Качественная теория дифференциальных уравнений.
- Критерии устойчивости. Критерий Рауса.
- Критерий Гурвица.
- Критерий Лгенар-Шипаро
- Графические (геометрические) критерии устойчивости Критерий Михайлова
- Критерий Найквиста