3.1 Кортеж
Пусть А и В — произвольные множества. Упорядоченная пара на множествах А и В, обозначаемая записью <a,b>, определяется не только самими элементами аА и bВ, но и порядком, в котором они записаны. И в этом состоит ее существенное отличие от неупорядоченной пары. Если А = B, то говорят об упорядоченной паре на множестве А.
Две упорядоченные пары <a,b>и <c, d>на множествах А и В называют равными, если а = c и b = d.
Упорядоченную пару <a,b>не следует связывать с множеством {а, b}, так как упорядоченная пара характеризуется не только составом, но и порядком элементов в ней. Более того, определение этого объекта вообще не позволяет рассматривать его как множество. Но упорядоченную пару можно определить и как множество, полагая, что упорядоченная пара <а,b> есть неупорядоченная пара {{а}, {а, b}}, включающая в себя одноэлементное множество {а} и неупорядоченную пару {а, b}. При а = b получаем <a,a>= {{а}}. Такое определение не изменит сути понятия, но тогда следует не определять явно равенство упорядоченных пар, а доказывать теорему о равенстве упорядоченных пар как определенного вида множеств.
Обобщением понятия упорядоченной пары является упорядоченный n-набор, или кортеж. В отличие от конечного множества {a1,...,an} кортеж <a1, ..., аn> на множествах А1, ..., Аn характеризуется не только входящими в него элементами a1А1, ..., аnАn, но и порядком, в котором они перечисляются.
Два кортежа α=<a1, ..., аn>и β=<b1, ..., bn>на множествах А1, ..., Аn равны, если ai=bi, i=.
Число n называется длиной кортежа (или размерностью кортежа), а элемент аi — i-й проекцией (компонентой) кортежа. Для двух кортежей одинаковой размерности их компоненты с одинаковыми номерами называют одноименными компонентами. Определение равенства кортежей можно переформулировать так: два кортежа одинаковой размерности равны тогда и только тогда, когда их одноименные компоненты совпадают. В отличие от множества, кортеж может иметь повторяющиеся элементы, но все эти элементы различны. Компоненты кортежа могут обозначать любые понятия, объекты, в том числе элементы множества или кортежа.
Простейшим примером кортежа является арифметический вектор.
Кортеж, который не содержит компонентов в своем составе, называется пустым кортежем и обозначается α=<>. Длина этого кортежа равна нулю.
Для любых кортежей α, β, γ справедливы утверждения:
Если α=β, то β=α
Если α=β и β = γ, то α= γ
- Общие сведения Сведения об эумк
- Методические рекомендации по изучению дисциплины
- Рабочая учебная программа
- Протокол согласования учебной программы по изучаемой учебной дисциплине с другими дисциплинами специальности
- Пояснительная записка
- Содержание дисциплины
- 1. Наименование тем, их содержание
- Тема 5. Отношения на множествах
- Тема 6. Соответствие и функции
- Тема 7. Мультимножества
- Раздел 2. Теория графов
- Тема 8. Основные понятия теории графов
- Тема 9. Графы
- Тема 10. Орграфы
- 3. Литература
- Теоретический раздел
- 1.2 Способы задания множеств
- Глава 2. Операции над множествами
- 2.1 Сравнение множеств
- 2.2 Операции над множествами
- 2.3 Свойства операций над множествами
- 2.4 Примеры доказательств тождеств с множествами
- 2.5 Булеан
- Глава 3. Упорядоченные множества
- 3.1 Кортеж
- 3.2 Операция проекции
- 3.3 Декартово произведение множеств
- 3.4 Графики
- Глава 4. Отношения на множествах
- 4.1 Понятие отношения
- 4.2 Свойства отношений
- 4.3 Операции над отношениями
- 4.4 Отношение эквивалентности
- 4.5 Отношение порядка
- Глава 5. Соответствия и функции
- 5.1 Основные понятия соответствия
- 5.2 Операции над соответствиями
- 5.3 Свойства соответствий
- 5.4 Отображения множеств
- 5.5 Функция
- Глава 6. Мультимножества
- 6.1 Понятие мультимножества
- 6.2 Операции над мультимножествами
- Раздел 2. Теория графов Глава 1. Основные понятия
- 1.1 Определения и примеры
- 1.2 Способы задания графов
- Глава 2. Графы
- 2.1 Типы графов
- 2.2 Подграфы
- 2.3 Сильно связные графы и компоненты графа
- 2.4 Маршруты, цепи, пути и циклы
- 2.5 Связность и компоненты графа
- 2.6 Операции над графами
- 2.7 Матрица смежности и инцидентности
- Глава 3. Орграфы
- 3.1 Определения и примеры
- 3.2 Орграфы и матрицы
- 3.3 Ориентированные эйлеровы графы
- Глава 4. Ориентированные ациклические графы и деревья
- 4.1 Ориентированные ациклические графы
- 4.2 Деревья
- Глава 5. Планарность и двойственность
- 5.1 Планарные графы
- 5.2 Точки сочленения, мосты и блоки
- 5.3 Двойственные графы
- Глава 6. Поиск на графах
- 6.1 Исследование лабиринта
- 6.2 Поиск в глубину
- 6.3 Поиск в ширину
- 6.4 Нахождение кратчайшего пути (Алгоритм Дейкстры)
- Практический раздел Контрольные работы Указания по выбору варианта
- Варианты контрольных заданий
- Контрольная работа № 1 Теоретическая часть (вопросы)
- Практическая часть Контрольное задание №1.
- Контрольное задание №2.
- Контрольное задание №3.
- Контрольное задание №4.
- Контрольное задание №5.
- Контрольное задание №6.
- Теоретическая часть (вопросы)
- Контрольное задание №1.
- Контрольное задание №2.
- Контрольное задание №3.