2) Ортоцентр треугольника.
Центр описанной окружности.
56
В § 15 были указаны условия, при которых перпендикулярные отрезки в
пространстве имеют своими проекциями также перпендикулярные отрезки. Если
плоскость треугольника параллельна плоскости проекций (например, треугольник
СОЕ на рис. 133), то, опустив пер-. пендикуляры из точек С", D" и Е" на
противоположные им стороны, получаем проекции высот треугольника. Но в
треугольнике общего положения так поступить нельзя.
В частном случае, когда одна сторона треугольника параллельна пл. 1,
а другая параллельна пл. 2 (рис. 143), проведя С"Е" перпендикулярно к A"B"
и В'Е' перпендикулярно к A'C', получаем в пространстве CF" AB и ВЕ" АС;
точка пересечения высот оказалась построенной без каких-либо особых приемов.
В сймом же общем случае для проведения на проекционной! чертеже
перпендикулярных линий приходится прибегать к особым приемам, которые будут
изложены дальше.
Построение точки пересечения биссектрис треугольника ') также может
быть произведено непосредственно лишь в частных случаях расположения
треугольника относительно плоскостей проекций. Это объясняется Тем, что
деление пополам проекции какого-либо утла отвечает его делению пополам в
пространстве только в том случае, если стороны данного угла одинаково
наклонены к той плоскости проекций, на которой производится деление пополам
проекции угла (см. § 15).
Рис. 143
При построении проекций какого-либо многоугольника необходимо обратить
внимание на то, чтобы не нарушалось условие нахождения всех точек данной
фигуры в одной плоскости.
На рис. 144 даны полностью горизонтальная проекция некоторого
пятиугольника ABCDE и фронтальные проекции только трех его вершин: А", В" и
Е". Справа
Рис. 144
на рис. 144 показано построение проекций остальных двух вершин, С" и
D", пятиугольника. Чтобы точки С и D лежали в плоскости, определенной тремя
точками А,
') Центр вписанной окружности.
57
В и Е, необходимо, чтобы они находились на прямых, лежащих в этой
плоскости. Этими прямыми являются диагонали AC, AD и BE, горизонтальные
проекции которых мы можем построить. На фронтальной проекции пятиугольника
мы можем провести лишь В"Е". Но в плоскости пятиугольника лежат точки
пересечения диагоналей К и М, горизонтальные проекции которых (К' и
М1) имеются, а фронтальные проекции получаются сразу, так как они
должны лежать на В"Е". По двум точкам строятся фронтальные проекции и
остальных двух диагоналей А"К" и А"М"; на них должны лежать точки С" и D",
которые определяются по их горизонтальным проекциям. ·
Круг, плоскость которого параллельна какой-либо плоскости проекций,
проецируется на эту плоскость без искажения (см. рис. 140, где круг взят в
горизонтальной плоскости). Если плоскость круга расположена перпендикулярно
к плоскости проекций, то на эту плоскость круг проецируется в виде отрезка
прямой, равного диаметру круга.
Но если круг расположен плоскости, составляющей с плоскостью проекций
какой-либо острый угол , то проекцией круга является фигура, называемая
эллипсом.
Эллипсом называется также кривая, ограничивающая эллипс-фигуру: если
эллипс-фигура является проекцией круга, то эллипс-линия является проекцией
окружности. В дальнейшем изложении, говоря об эллипсе, будем подразумевать
проекцию окружности.
Эллипс относится к числу кривых, называемых кривыми второго порядка.
Уравнения таких кривых в декартовых координатах представляют собой уравнения
второго порядка. Кривая второго порядка пересекается с прямой линией в двух
точках. Далее мы встретимся еще с параболой и гиперболой, тоже кривыми
второго порядка.
Эллипс можно рассматривать как "сжатую" окружность. Это показано на
рис. 145, слева. Положим, что на радиусе ОВ отложен отрезок ОВ1 длиной b,
причем b < а (т. е. меньше радиуса окружности). Если теперь взять на
окружности какую-либо точку К и, проведя из К перпендикуляр на А 1 А2,
отметить на КМ точку
Рис. 145 Рис. 146
ку k1 так, чтобы МК1 :МК = b:а, то эта точка К, будет принадлежать
эллипсу. Так можно преобразовать каждую точку окружности в точку эллипса,
соблюдая одно и то же отношение b:а. Окружность как бы равномерно сжимается;
линия, в которую при этом преобразуется окружность, является эллипсом.
Отношение b: a называется коэффициентом сжатия эллипса. Если b приближается
к а; то эллипс расширяется и при b = а превращается в окружность.
Напомним (из курса черчения средней школы), что
1) отрезок А1А2=2а называется большой осью эллипса;
2) отрезок bib- = 2b называется малой осью эллипса;
3) большая и малая оси взаимно перпендикулярны;
точка пересечения осей называется центром эллипса;
58
5) отрезок прямой между двумя точками -эллипса, проходящий через -центр
эллипса, называется его диаметром;
6) точки A,, A2> В,, B2 называются вершинами эллипса;
7) эллипс симметричен относительно его осей и относительно его центра;
эллипс есть геометрическое место точек, сумма расстояний которых до
двух заданных точек Ft и F2 (рис. 145, справа) имеет одно и то же значение
2а (размер большой оси).
C'D' делит хорду M\N{, параллельную диаметру E'F', сопряженному с CD',
пополам. Но именно такие два диаметра эллипса, из которых каждый делит
пополам хорды, параллельные другому, являются сопряженными.
Сопряженные диаметры эллипса не перпендикулярны один к другому;
исключение составляют оси эллипса, Из рассмотрения рис. 146 следует, что при
повороте окружности вокруг диаметра AtA2 на угол этот диаметр,
параллельный пл. itlt сохраняет в горизонтальной проекции свою величину и
становится большой осью эллипса (см. рис. 146, справа). Диаметр же В1В2,
повернутый на угол 1 к пл. -, проецируется на нее с сокращением:
Это соответствует отношению осей эллипса, т. е. его коэффициенту
сжатия.
Если в окружности провести какие-либо два взаимно перпендикулярных
диаметра, то в проекции, представляющей собой эллипс (рис. 146, справа),
проекции таких диаметров окружности оказываются диаметрами эллипса,
называемыми сопряженными. Если в окружности (рис. 146, слева) провести,
например, хорду [(, параллельную диаметру E'F', то диаметр C'D' разделит
эту хорду (и все хорды, ей параллельные) пополам. Очевидно, что и в эллипсе
сохранится это свойство (см. рис. 146, справа): диаметр также являющиеся
парой сопряженных диаметров.
Рис. 147
Напомним, как производится построение эллипса по его осям (рис. 147,
слева). Построение выполняется при помощи двух концентрических окружностей,
проведенных радиусами а (большая полуось) и b (малая полуось). Если провести
какой-либо радиус ОМ, и прямые 1Л/„ и ЕМ, параллельные малой и
большой осям эллипса, то при пересечении этих прямых получится точка М,
принадлежащая эллипсу. Действительно,
Проводя ряд радиусов и повторяя указанное построение, получаем ряд
точек эллипса.
Построив какую-нибудь точку эллипса, можно построить еще три точки,
расположенные симметрично найденной относительно осей эллипса или его
центра.
На рис. 147 справа показано построение фокусов эллипса: засекая из
точки B, большую ось дугой, радиуса, равного большой полуоси oa 1, получаем
точки f 1 и F2 -- фокусы эллипса. Построив угол F 1КF2, где К -- любая точка
эллипса, проводим в нем биссектрису и перпендикулярно к ней в точке К
касательную к эллипсу. Прямая KN, перпендикулярная каса-тельной, является
нормалью1) к эллипсу в точке К.
') От normal is (лат.) -- прямолинейный.
59
Как построить оси эллипса, если известны его сопряженные диаметры?
Пусть получены сопряженные полудиаметры CA и СВ (рис. 148). Для
построения осей эллипса:
1) один из сопряженных полудиаметров, например CB, поворачиваем на угол
90° по направлению к другому (до положения CB2);
2) проводим отрезок AB2 и делим его пополам;
3) из точки К проводим окружность радиусом КС; ·
4) прямую, определяемую отрезком АВ2, продолжаем до пересечения с этой
окружностью в точках D и E;
5) проводим прямую DC, получаем направление большой оси эллипса;
6) проводим ЕС -- направление малой оси эллипса;
7) откладываем С1 .= АЕ -- большая полуось;
8) откладываем СЗ = AD -- малая полуось;
9) откладываем С2 = С;, С4 = СЗ, С5,= СА, Со = СВ.
Эллипс может быть проведен через восемь точек /, А, 3, В, 2,5,4 и 6 или
построен по большой и малой осям, как показано на рис. 147.
Итак, проведя прямые CD и СЕ, мы получили направления большой и малой
осей эллипса; точка A, принадлежащая эллипсу, делит диаметр ED на два
отрезка, из которых один (АЕ) равен большой полуоси этого эллипса, а другой
(AD) -- малой полуоси. Если (рис. 149)
Рис. 150 Рис. 151
взять оси координат и у соответственно по прямым CD и СЕ и из точки А
провести перпендикуляр AD к прямой CD, то координаты,,точки А могут быть
выражены следующим образом:
Отсюда
Это уравнение эллипса, у которого АЕ -- большая полуось, а АО -- малая
полуось.
На рис. 146 было показано построение горизонтальной проекции
окружности, расположенной в фронтально-проецирующей плоскости, наклоненной к
пл. 1. Пусть теперь в такой
60
плоскости лежит эллипс с полуосями а и b. Его проекцией иногда может
оказаться окружность с диаметром, равным малой оси эллипса: это будет тогда,
когда для угла между плоскостью, в которой лежит эллипс, и пл. 1 имеет
место соотношение
(рис. 150). Полученная окружность будет служить проекцией ряда
эллипсов, если изменять угол и размер а, оставляя b неизменным. Представим
себе прямой круговой цилиндр с вертикальной осью (рис. 151); наклонные
сечения этого цилиндра будут эллипсами, малая ось которых равна диаметру
цилиндра.
ВОПРОСЫ К §§ 20-21
1. Как изображается на чертеже фронтально-проецирующая плоскость,
проведенная через прямую общего положения?
2. Как построить проекции центра тяжести в заданном чертеже
треугольника?
3. Что могут представлять собой проекции круга в зависимости от
положения его плоскости относительно плоскости проекций?
4. Можно ли рассматривать эллипс как "сжатую" окружность?
5. Что такое коэффициент сжатия эллипса?
6. Имеет ли эллипс: а) оси симметрии, б) центр симметрии?
7. Какие диаметры эллипса называются: а) осями, б) сопряженными
диаметрами?
8. Как по заданным сопряженным диаметрам эллипса построить его оси?
- 10. Проекции линий -- по проекциям точек, определяющих линию; кроме
- 11. Обозначение плоскостей, заданных следами:
- 12. При преoбaзoвaнии эпюра (чертежа) вращением (или совмещением) в
- 13. Плоскость проекций (картинная плоскость) в аксонометрии -- буквой
- 2) В основе этого слова латинское projectio -- бросание
- Глава I образование проекций
- § 1. Проекции центральные
- § 2. Проекции параллельные
- 5). Так построенные проекции называются параллельными.
- 1) Перспективные проекции в программу данного курса не
- § 3. Метод монжа
- 1) Теперь Петербургский государственный университет путей
- XIX столетии н. Г. Уже получила значительное научное развитие. Очевидно, для
- Глава II точка и прямая
- § 4. Точка в системе двух плоскостей проекций 1,2
- 2. Проведя из а перпендикуляры к и 2, получаем проекции точки а:
- 1) Метод проекций с числовыми отметками в программу
- 1) Ёриге (франц.) -- чертеж, проект. Иногда вместо "эпюр"
- § 5. Точка в системе трех плоскостей проекций 1, 2, 3
- 15): Обозначенная буквой 3 плоскость перпендикулярна и к 1 и к 2. Ее
- § 6. Ортогональные проекции и система прямоугольных координат
- 2) Ordinata (лат.) -- от ordinatim ducta (лат.) -- подряд
- 3) Applicata (лат.) -- приложенная.
- 26 Показана точка к, полученная в пересечении трех плоскостей, из которых
- § 7. Точка в четвертях и октантах пространства
- § 8. Образование дополнительных систем плоскостей проекций
- 1; Равном aa' и а"ах.
- 2/ 1) Введена еще ось 4/1; она выбирается согласно условиям,
- 1) Это обозначение оси соответствует ранее принятому -- х.
- § 9. Чертежи без указания осей проекций
- 2 В новое положение (на рис. 43 положение 45) в направлении
- 1) Биссекторная плоскость двугранного угла -- плоскость,
- § 10. Проекции отрезка прямой линии
- 1) Вывод см. В § 13.
- § 11. Особые (частные) положения прямой линии относительно плоскостей
- 1. Прямая параллельна плоскостям 1 и 2 (рис. 54), т. Е.
- 2. Прямая параллельна плоскостям , и 3 (рис. 55), т. Е.
- 3. Прямая параллельна плоскостям 2 и 3 (рис. 56), т. Е.
- § 12. Точка на прямой. Следы прямой
- 63) Задана проекция с", то, очевидно, надо разделить а'в' в том же
- § 13. Построение на чертеже натуральной величины
- 1Определены из прямоугольного треугольника, построенного на проекции а'в'
- 2А'в' равны каждый 45° (см. § 10).
- 2 Системой 4, 1, выбрав пл. 4% 1 и параллельно заданному на чертеже
- 1 || А'в1); проекция выражает
- § 14. Взаимное положение двух прямых
- § 15. О проекциях плоских углов
- 1. Если плоскость, которой расположен некоторый угол, перпендикулярна
- 2. Если плоскость прямого угла не перпендикулярна к плоскости проекций
- 3. Если проекция плоского угла представляет собой прямой угол, то
- 4. Если проекция некоторого угла, у которого одна сторона параллельна
- 2) Интересующихся доказательством обратных теорем отсылаем к
- 5. Ecли плоскость тупого или острого угла не перпендикулярна к
- 6. Если обе стороны любого угла, параллельны плоскости проекций, то его
- 0; С°в° || св. Пл. , проведенная через точку с перпендикулярно к св,
- Глава III. Плоскость
- § 16. Различные способы задания плоскости на чертеже
- § 17. Следы плоскости
- § 18. Прямая и точка в плоскости. Прямые особого положения
- 1) Прямая принадлежит плоскости, если она проходит через две точки,
- 2) Прямая принадлежит плоскости, если она проходит через точку,
- 2) Для линии ската плоскости распространено название "линия
- 108, Справа, на котором изображена пл. И прямая mb, устанавливаем, что эта
- § 19. Положения плоскости относительно плоскостей проекций
- 1. Плоскость, не перпендикулярная ни к одной из плоскостей проекций,
- 2. Но, может быть, эта плоскость перпендикулярна к 3? Нет, горизонталь
- 110, 111, 113, 116, А также рис. 102, 104, 107, слева, 108, 115, справа,
- 117, 119, На которых плоскости выражены следами. Плоскость общего положения
- 1 2 , То рассматриваемая плоскость может быть определена как плоскость,
- 2. Если плоскости перпендикулярны лишь к одной из плоскостей проекций,
- 1, 2 С указанием оси и следов f"о и h'о
- 129). Следы ее f 0 и h0 сливаются с осью х; в этом случае необходимо иметь
- 130: Плоскость задана двумя пересекающимися прямыми, из которых одна (ab)
- 3. Если плоскости перпендикулярны к двум плоскостям проекций, то также
- § 20. Проведение проецирующей плоскости через прямую линию
- § 21. Построение проекций плоских фигур
- 1 Или к 2. Например, на рис. 123 плоскость треугольника
- 140, Проецируется на пл. 1 без искажения.
- 2) Ортоцентр треугольника.
- Глава IV. Взаимное положение двух плоскостей, прямой линии и плоскости
- § 22. Обзор взаимных положений двух плоскостей, прямой линии и
- § 23. Пересечение прямой линии с плоскостью, перпендикулярной к одной
- § 24. Построение линии пересечения двух плоскостей
- 1, В своем пересечении определяют первую точку, к1, линии пересечения
- 1'2', И 3'4', следует для проекций 5'6' и 7'8' взять по одной
- 167 Показывает, что и пересекаются между собой, хотя их горизонтали
- § 25. Пересечение прямой линии с плоскостью общего положения
- § 26. Построение линии пересечения двух плоскостей по точкам
- 166). Рассмотрим теперь другой способ построения в применении к плоскостям
- 3', Через горизонтальную проекцию которой проведена прямая параллельно
- § 27. Построение прямой линии и плоскости, параллельных между собой
- § 28. Построение взаимно параллельных плоскостей
- § 29. Построение взаимно перпендикулярных прямой и плоскости
- 1) Через точку а провести плоскость (назовем ее ), перпендикулярную к
- 2) Определить точку к пересечения прямой вс с ил. ;
- 1,2 Дополнительной плоскости и образования, таким образом, системы 3, 1,
- 90°. Аналогично, если пл. Составляет с пл. 2 угол ?, а прямая am,
- § 30. Построение взаимно перпендикулярных плоскостей
- 194 Горизонтально-проецирующая плоскость проходит через точку к
- § 31. Построение проекций угла между прямой и плоскостью и между двумя
- Глава V. Способы перемены плоскостей проекций и вращения
- § 32. Приведение прямых линий и плоских фигур
- 1) Введением дополнительных плоскостей проекций так, чтобы прямая линия
- 2) Изменением положения прямой линии или плоской фигуры путем поворота
- § 33. Способ перемены плоскостей проекций 1)
- 1. Тем самым пл. 3 окажется перпендикулярной к пл. 1 (т. Е. Явится
- 206 Такой точкой служит точка n, взятая на следе f"о; построена ее проекция
- 3 Равны между собой и выражаются, например, отрезком а'2; взяв ось 3/4
- 3 % 1 И 3 % abc, а 4 %3 и 4 || abc. Заключительная стадия построения
- 4 Проведена параллельно пл. Abc, что и приводит к определению натурального
- § 34. Основы способа вращения ')
- § 35. Вращение точки, отрезка прямой, плоскости вокруг оси,
- 1. Пусть точка а вращается вокруг оси, перпендикулярной к пл. 1 (рис.
- 212). Через точку а проведена пл. , перпендикулярная к оси вращения и,
- 2. Теперь рассмотрим поворот отрезка_прямой линии вокруг заданной оси.
- 3. Поворот плоскости вокруг заданной оси сводится к повороту
- 218; Плоскость общего положения повернута на угол вокруг оси,
- 218 Упрощение состоит в том, что отпала горизонталь. Она понадобилась бы в
- 218 Пришлось бы взять две вспомогательные линии.
- 2. Если взять ось вращения, перпендикулярную к пл. 1 то можно пл.
- § 36. Применение способа вращения без указания на чертеже осей
- 1 И, следовательно, проекция
- § 37. Вращение точки, отрезка прямой, плоскости вокруг оси,