108, Справа, на котором изображена пл. И прямая mb, устанавливаем, что эта
прямая - фронталь плоскости. Действительно, она параллельна фронтальному
следу ("нулевой" фронтали) плоскости. Горизонтальная проекция фронтали
параллельна оси х, фронтальная проекция фронтали параллельна фронтальному
следу плоскости.
Линиями наибольшего наклона плоскости к плоскостям 1, 2 и 3
называются прямые, лежащие в ней и перпендикулярные или к горизонталям
плоскости, или к ее фронталям, или к ее профильным прямым. В первом случае
определяется наклон к пл. 1 , во втором - к пл. 2, в третьем - к пл. 3.
Для проведения линий наибольшего наклона плоскости можно, конечно,
соответственно брать ее следы.
Как было сказано выше, линия наибольшего наклона плоскости к пл. 1
называется линией ската плоскости. :
Согласно правилам проецирования прямого угла (см. § 15) горизонтальная
проекция линии ската плоскости перпендикулярна к горизонтальной проекции
горизонтали этой плоскости или к ее горизонтальному следу. Фронтальная
проекция линии ската строится после горизонтальной и может занимать
различные положения в зависимости от задания плоскости. На рис. 114
изображена линия ската пл. а: ВК%h'о,. Tax как В'К также
перпендикулярна к h'о, то "BKB' есть линейный угол
Рис. 114
двугранного, образованного плоскостями и .. Следовательно, линия
ската плоскости может служить для определения угла наклона этой плоскости к
плоскости проекций nt.
Аналогично, линия наибольшего наклона плоскости к пл. 2 служит для
определения угла между этой плоскостью и пл. 2, а линия наибольшего наклона
к· пл. 3 - для определения угла с пл. 3.
На рис. 115 построены линии ската в заданных плоскостях. Угол пл. с
пл. , выражен проекциями - фронтальной в виде угла В"К"В' и, горизонтальной
в виде отрезка К'В'. Определить величину этого угла можно, построив
прямоугольный треугольник по катетам, равным К'В' и В"В'.
Очевидно, линия наибольшего наклона плоскости определяет положение этой
плоскости. Например, если (рис, 115) заданна линия ската KB, то, проведя
перпендикулярную к ней горизонтальную прямую AN или задавшись осью проекций
и проведя h'о% К'В', мы вполне определяем плоскость, для
которой KB является линией ската.
47
Рассмотренные нами прямые особого положения в плоскости, главным
образом горизонтали и фронтали, весьма часто применяются в различных
построениях и при решении задач. Это объясняется значительной простотой
построения указанных прямых; их поэтому удобно применять в качестве
вспомогательных.
На рис. 116 была задана горизонтальная проекция К' точки К. Требовалось
найти фронтальную проекцию К", если точка К должна быть в плоскости,
заданной двумя параллельными прямыми, проведенными из точек А и В.
Сначала была проведена некоторая прямая линия, проходящая через точку К
и лежащая л заданной плоскости. В качестве такой прямой выбрана фронталь MN:
ее горизонтальная проекция проведена через данную проекцию К'. Затем
построены точки М" и N", определяющие фронтальную проекцию фронтали.
Искомая проекция К" должна находиться на прямой M"N".
На рис. 117 слева по данной фронтальной проекции A" точки А,
принадлежащей пл. а, найдена ее горизонтальная проекция (А1);
построение произведено при помощи горизонтали ЕК. На рис. 117 справа
аналогичная задача решена при помощи' фронтали MN.
Еще один пример построения недостающей проекции точки, принадлежащей
некоторой плоскости, дан на рис. 118. Слева показано задание: линия ската
плоскости (AB) и горизонтальная проекция точки (К'). {Справа на рис. 118
показано построение: через точку К' проведена (перпендикулярная А'В')
горизонтальная проекция горизонтали, на которой должна лежать точка К, по
точке L" найдена фронтальная проекция этой горизонтали и на ней искомая
проекция К".
На рис. 119 дан пример построения второй проекции некоторой плоской
кривой, если известна одна проекция (горизонтальная) и пл. а, в которой эта
кривая расположена. Взяв на горизонтальной проекции кривой ряд точек,
находим при помощи горизонталей точки для построения фронтальной проекции
кривой.
Стрелками показан ход построения фронтальной проекции A" по
горизонтальной проекции А'.
48
ВОПРОСЫ К §§16-18 ,
1. Как задается плоскость на чертеже?
2. Что такое след плоскости на плоскости проекций?
3. Где располагаются фронтальная проекция горизонтального следа и
горизонтальная проекция фронтального следа плоскости?
4. Как определяется на чертеже, принадлежит ли прямая данной плоскости?
5. Как построить на чертеже точку, принадлежащую данной плоскости?
6. Что такое фронталь, горизонталь и'линия ската плоскости?
7. Может ли служить линия ската плоскости для определения угаа наклона
этой плоскости к плоскости проекций ·?
Определяет ли прямая линия плоскость, для которой эта прямая является
линией ската?
- 10. Проекции линий -- по проекциям точек, определяющих линию; кроме
- 11. Обозначение плоскостей, заданных следами:
- 12. При преoбaзoвaнии эпюра (чертежа) вращением (или совмещением) в
- 13. Плоскость проекций (картинная плоскость) в аксонометрии -- буквой
- 2) В основе этого слова латинское projectio -- бросание
- Глава I образование проекций
- § 1. Проекции центральные
- § 2. Проекции параллельные
- 5). Так построенные проекции называются параллельными.
- 1) Перспективные проекции в программу данного курса не
- § 3. Метод монжа
- 1) Теперь Петербургский государственный университет путей
- XIX столетии н. Г. Уже получила значительное научное развитие. Очевидно, для
- Глава II точка и прямая
- § 4. Точка в системе двух плоскостей проекций 1,2
- 2. Проведя из а перпендикуляры к и 2, получаем проекции точки а:
- 1) Метод проекций с числовыми отметками в программу
- 1) Ёриге (франц.) -- чертеж, проект. Иногда вместо "эпюр"
- § 5. Точка в системе трех плоскостей проекций 1, 2, 3
- 15): Обозначенная буквой 3 плоскость перпендикулярна и к 1 и к 2. Ее
- § 6. Ортогональные проекции и система прямоугольных координат
- 2) Ordinata (лат.) -- от ordinatim ducta (лат.) -- подряд
- 3) Applicata (лат.) -- приложенная.
- 26 Показана точка к, полученная в пересечении трех плоскостей, из которых
- § 7. Точка в четвертях и октантах пространства
- § 8. Образование дополнительных систем плоскостей проекций
- 1; Равном aa' и а"ах.
- 2/ 1) Введена еще ось 4/1; она выбирается согласно условиям,
- 1) Это обозначение оси соответствует ранее принятому -- х.
- § 9. Чертежи без указания осей проекций
- 2 В новое положение (на рис. 43 положение 45) в направлении
- 1) Биссекторная плоскость двугранного угла -- плоскость,
- § 10. Проекции отрезка прямой линии
- 1) Вывод см. В § 13.
- § 11. Особые (частные) положения прямой линии относительно плоскостей
- 1. Прямая параллельна плоскостям 1 и 2 (рис. 54), т. Е.
- 2. Прямая параллельна плоскостям , и 3 (рис. 55), т. Е.
- 3. Прямая параллельна плоскостям 2 и 3 (рис. 56), т. Е.
- § 12. Точка на прямой. Следы прямой
- 63) Задана проекция с", то, очевидно, надо разделить а'в' в том же
- § 13. Построение на чертеже натуральной величины
- 1Определены из прямоугольного треугольника, построенного на проекции а'в'
- 2А'в' равны каждый 45° (см. § 10).
- 2 Системой 4, 1, выбрав пл. 4% 1 и параллельно заданному на чертеже
- 1 || А'в1); проекция выражает
- § 14. Взаимное положение двух прямых
- § 15. О проекциях плоских углов
- 1. Если плоскость, которой расположен некоторый угол, перпендикулярна
- 2. Если плоскость прямого угла не перпендикулярна к плоскости проекций
- 3. Если проекция плоского угла представляет собой прямой угол, то
- 4. Если проекция некоторого угла, у которого одна сторона параллельна
- 2) Интересующихся доказательством обратных теорем отсылаем к
- 5. Ecли плоскость тупого или острого угла не перпендикулярна к
- 6. Если обе стороны любого угла, параллельны плоскости проекций, то его
- 0; С°в° || св. Пл. , проведенная через точку с перпендикулярно к св,
- Глава III. Плоскость
- § 16. Различные способы задания плоскости на чертеже
- § 17. Следы плоскости
- § 18. Прямая и точка в плоскости. Прямые особого положения
- 1) Прямая принадлежит плоскости, если она проходит через две точки,
- 2) Прямая принадлежит плоскости, если она проходит через точку,
- 2) Для линии ската плоскости распространено название "линия
- 108, Справа, на котором изображена пл. И прямая mb, устанавливаем, что эта
- § 19. Положения плоскости относительно плоскостей проекций
- 1. Плоскость, не перпендикулярная ни к одной из плоскостей проекций,
- 2. Но, может быть, эта плоскость перпендикулярна к 3? Нет, горизонталь
- 110, 111, 113, 116, А также рис. 102, 104, 107, слева, 108, 115, справа,
- 117, 119, На которых плоскости выражены следами. Плоскость общего положения
- 1 2 , То рассматриваемая плоскость может быть определена как плоскость,
- 2. Если плоскости перпендикулярны лишь к одной из плоскостей проекций,
- 1, 2 С указанием оси и следов f"о и h'о
- 129). Следы ее f 0 и h0 сливаются с осью х; в этом случае необходимо иметь
- 130: Плоскость задана двумя пересекающимися прямыми, из которых одна (ab)
- 3. Если плоскости перпендикулярны к двум плоскостям проекций, то также
- § 20. Проведение проецирующей плоскости через прямую линию
- § 21. Построение проекций плоских фигур
- 1 Или к 2. Например, на рис. 123 плоскость треугольника
- 140, Проецируется на пл. 1 без искажения.
- 2) Ортоцентр треугольника.
- Глава IV. Взаимное положение двух плоскостей, прямой линии и плоскости
- § 22. Обзор взаимных положений двух плоскостей, прямой линии и
- § 23. Пересечение прямой линии с плоскостью, перпендикулярной к одной
- § 24. Построение линии пересечения двух плоскостей
- 1, В своем пересечении определяют первую точку, к1, линии пересечения
- 1'2', И 3'4', следует для проекций 5'6' и 7'8' взять по одной
- 167 Показывает, что и пересекаются между собой, хотя их горизонтали
- § 25. Пересечение прямой линии с плоскостью общего положения
- § 26. Построение линии пересечения двух плоскостей по точкам
- 166). Рассмотрим теперь другой способ построения в применении к плоскостям
- 3', Через горизонтальную проекцию которой проведена прямая параллельно
- § 27. Построение прямой линии и плоскости, параллельных между собой
- § 28. Построение взаимно параллельных плоскостей
- § 29. Построение взаимно перпендикулярных прямой и плоскости
- 1) Через точку а провести плоскость (назовем ее ), перпендикулярную к
- 2) Определить точку к пересечения прямой вс с ил. ;
- 1,2 Дополнительной плоскости и образования, таким образом, системы 3, 1,
- 90°. Аналогично, если пл. Составляет с пл. 2 угол ?, а прямая am,
- § 30. Построение взаимно перпендикулярных плоскостей
- 194 Горизонтально-проецирующая плоскость проходит через точку к
- § 31. Построение проекций угла между прямой и плоскостью и между двумя
- Глава V. Способы перемены плоскостей проекций и вращения
- § 32. Приведение прямых линий и плоских фигур
- 1) Введением дополнительных плоскостей проекций так, чтобы прямая линия
- 2) Изменением положения прямой линии или плоской фигуры путем поворота
- § 33. Способ перемены плоскостей проекций 1)
- 1. Тем самым пл. 3 окажется перпендикулярной к пл. 1 (т. Е. Явится
- 206 Такой точкой служит точка n, взятая на следе f"о; построена ее проекция
- 3 Равны между собой и выражаются, например, отрезком а'2; взяв ось 3/4
- 3 % 1 И 3 % abc, а 4 %3 и 4 || abc. Заключительная стадия построения
- 4 Проведена параллельно пл. Abc, что и приводит к определению натурального
- § 34. Основы способа вращения ')
- § 35. Вращение точки, отрезка прямой, плоскости вокруг оси,
- 1. Пусть точка а вращается вокруг оси, перпендикулярной к пл. 1 (рис.
- 212). Через точку а проведена пл. , перпендикулярная к оси вращения и,
- 2. Теперь рассмотрим поворот отрезка_прямой линии вокруг заданной оси.
- 3. Поворот плоскости вокруг заданной оси сводится к повороту
- 218; Плоскость общего положения повернута на угол вокруг оси,
- 218 Упрощение состоит в том, что отпала горизонталь. Она понадобилась бы в
- 218 Пришлось бы взять две вспомогательные линии.
- 2. Если взять ось вращения, перпендикулярную к пл. 1 то можно пл.
- § 36. Применение способа вращения без указания на чертеже осей
- 1 И, следовательно, проекция
- § 37. Вращение точки, отрезка прямой, плоскости вокруг оси,