5). Так построенные проекции называются параллельными.
Параллельное проецирование можно рассматривать как частный случай
центрального, если принять, что центр проекций бесконечно удален.
Следовательно, параллельной проекцией точки будем называть точку
пересечения проецирующей прямой, проведенной параллельно заданному
направлению, с плоскостью проекций.
Рис. 5 Рис. 6
Чтобы получить параллельную проекцию некоторой линии, можно построить
проекции ряда ее точек и провести через эти проекции линию (рис. 6).
При этом проецирующие прямые в своей совокупности образуют
цилиндрическую поверхность; поэтому параллельные проекции также называют
цилиндрическими1).
Понятие о цилиндрической поверхности см. в стереометрии.
11
В параллельных проекциях, так же как и в центральных:
1) для прямой линии проецирующей поверхностью в общем случае служит
плоскость, и поэтому прямая линия вообще проецируется в виде прямой;
2) каждая точка и линия в пространстве имеют единственную свою
проекцию;
3) каждая точка на плоскости проекций может быть проекцией множества
точек, если через них проходит общая для них проецирующая прямая (рис. 5:
точка D° служит проекцией точек D, D1, D2);
4) каждая линия на плоскости проекций может быть проекцией множества
линий, если они расположены в общей для них проецирующей плоскости (рис. 7:
отрезок А°В° служит проекцией отрезков АВ и А1В1 и отрезка А2В2 плоской
кривой линии); для единственного решения необходимы дополнительные условия;
5) для построения проекции прямой достаточно спроецировать две ее точки
и через полученные проекции этих точек провести прямую линию;
Рис. 7
6) если точка принадлежит прямой, то проекция точки принадлежит
проекции этой прямой (рис. 8: точка К принадлежит прямой, проекции К°
принадлежит проекции этой прямой).
Кроме перечисленных свойств для параллельных проекций можно указать еще
следующие:
7) если прямая параллельна направлению проецирования (прямая АВ на рис.
8), то проекцией прямой (и любого ее отрезка) является точка (A°, она же
В°);
8) отрезок прямой линии, параллельной плоскости проекций, проецируется
на эту плоскость в натуральную свою величину (рис. 8: CD = C°D°, как отрезки
параллельных между параллельными).
В дальнейшем будут рассмотрены еще некоторые свойства параллельных
проекций, показывающие, какие натуральные соотношения в рассматриваемых
предметах сохраняются в проекциях этих предметов.
Применяя приемы параллельного проецирования точки и линии, можно
строить параллельные проекции поверхности и тела.
Параллельные проекции делятся на косоугольные и прямоугольные. В первом
случае направление проецирования составляет с плоскостью проекций угол, не
равный 90°; во втором случае проецирующие прямые перпендикулярны к пл. пр.
При рассмотрении параллельных проекций следовало бы представить себя
удаленным на бесконечно большое расстояние от изображения. На самом же деле
предметы и их изображения рассматриваются с конечного расстояния; при этом
лучи, идущие в глаз зрителя, образуют поверхность коническую, а не
цилиндрическую. Следовательно, более естественное изображение получается
(при соблюдении определенных условий) центральным проецированием, а не
параллельным. Поэтому, когда требуется, чтобы изображение давало такое же
зрительное впечатление, как и самый предмет, применяют перспективные
проекции, в основе которых лежит центральное проецирование 1).
- 10. Проекции линий -- по проекциям точек, определяющих линию; кроме
- 11. Обозначение плоскостей, заданных следами:
- 12. При преoбaзoвaнии эпюра (чертежа) вращением (или совмещением) в
- 13. Плоскость проекций (картинная плоскость) в аксонометрии -- буквой
- 2) В основе этого слова латинское projectio -- бросание
- Глава I образование проекций
- § 1. Проекции центральные
- § 2. Проекции параллельные
- 5). Так построенные проекции называются параллельными.
- 1) Перспективные проекции в программу данного курса не
- § 3. Метод монжа
- 1) Теперь Петербургский государственный университет путей
- XIX столетии н. Г. Уже получила значительное научное развитие. Очевидно, для
- Глава II точка и прямая
- § 4. Точка в системе двух плоскостей проекций 1,2
- 2. Проведя из а перпендикуляры к и 2, получаем проекции точки а:
- 1) Метод проекций с числовыми отметками в программу
- 1) Ёриге (франц.) -- чертеж, проект. Иногда вместо "эпюр"
- § 5. Точка в системе трех плоскостей проекций 1, 2, 3
- 15): Обозначенная буквой 3 плоскость перпендикулярна и к 1 и к 2. Ее
- § 6. Ортогональные проекции и система прямоугольных координат
- 2) Ordinata (лат.) -- от ordinatim ducta (лат.) -- подряд
- 3) Applicata (лат.) -- приложенная.
- 26 Показана точка к, полученная в пересечении трех плоскостей, из которых
- § 7. Точка в четвертях и октантах пространства
- § 8. Образование дополнительных систем плоскостей проекций
- 1; Равном aa' и а"ах.
- 2/ 1) Введена еще ось 4/1; она выбирается согласно условиям,
- 1) Это обозначение оси соответствует ранее принятому -- х.
- § 9. Чертежи без указания осей проекций
- 2 В новое положение (на рис. 43 положение 45) в направлении
- 1) Биссекторная плоскость двугранного угла -- плоскость,
- § 10. Проекции отрезка прямой линии
- 1) Вывод см. В § 13.
- § 11. Особые (частные) положения прямой линии относительно плоскостей
- 1. Прямая параллельна плоскостям 1 и 2 (рис. 54), т. Е.
- 2. Прямая параллельна плоскостям , и 3 (рис. 55), т. Е.
- 3. Прямая параллельна плоскостям 2 и 3 (рис. 56), т. Е.
- § 12. Точка на прямой. Следы прямой
- 63) Задана проекция с", то, очевидно, надо разделить а'в' в том же
- § 13. Построение на чертеже натуральной величины
- 1Определены из прямоугольного треугольника, построенного на проекции а'в'
- 2А'в' равны каждый 45° (см. § 10).
- 2 Системой 4, 1, выбрав пл. 4% 1 и параллельно заданному на чертеже
- 1 || А'в1); проекция выражает
- § 14. Взаимное положение двух прямых
- § 15. О проекциях плоских углов
- 1. Если плоскость, которой расположен некоторый угол, перпендикулярна
- 2. Если плоскость прямого угла не перпендикулярна к плоскости проекций
- 3. Если проекция плоского угла представляет собой прямой угол, то
- 4. Если проекция некоторого угла, у которого одна сторона параллельна
- 2) Интересующихся доказательством обратных теорем отсылаем к
- 5. Ecли плоскость тупого или острого угла не перпендикулярна к
- 6. Если обе стороны любого угла, параллельны плоскости проекций, то его
- 0; С°в° || св. Пл. , проведенная через точку с перпендикулярно к св,
- Глава III. Плоскость
- § 16. Различные способы задания плоскости на чертеже
- § 17. Следы плоскости
- § 18. Прямая и точка в плоскости. Прямые особого положения
- 1) Прямая принадлежит плоскости, если она проходит через две точки,
- 2) Прямая принадлежит плоскости, если она проходит через точку,
- 2) Для линии ската плоскости распространено название "линия
- 108, Справа, на котором изображена пл. И прямая mb, устанавливаем, что эта
- § 19. Положения плоскости относительно плоскостей проекций
- 1. Плоскость, не перпендикулярная ни к одной из плоскостей проекций,
- 2. Но, может быть, эта плоскость перпендикулярна к 3? Нет, горизонталь
- 110, 111, 113, 116, А также рис. 102, 104, 107, слева, 108, 115, справа,
- 117, 119, На которых плоскости выражены следами. Плоскость общего положения
- 1 2 , То рассматриваемая плоскость может быть определена как плоскость,
- 2. Если плоскости перпендикулярны лишь к одной из плоскостей проекций,
- 1, 2 С указанием оси и следов f"о и h'о
- 129). Следы ее f 0 и h0 сливаются с осью х; в этом случае необходимо иметь
- 130: Плоскость задана двумя пересекающимися прямыми, из которых одна (ab)
- 3. Если плоскости перпендикулярны к двум плоскостям проекций, то также
- § 20. Проведение проецирующей плоскости через прямую линию
- § 21. Построение проекций плоских фигур
- 1 Или к 2. Например, на рис. 123 плоскость треугольника
- 140, Проецируется на пл. 1 без искажения.
- 2) Ортоцентр треугольника.
- Глава IV. Взаимное положение двух плоскостей, прямой линии и плоскости
- § 22. Обзор взаимных положений двух плоскостей, прямой линии и
- § 23. Пересечение прямой линии с плоскостью, перпендикулярной к одной
- § 24. Построение линии пересечения двух плоскостей
- 1, В своем пересечении определяют первую точку, к1, линии пересечения
- 1'2', И 3'4', следует для проекций 5'6' и 7'8' взять по одной
- 167 Показывает, что и пересекаются между собой, хотя их горизонтали
- § 25. Пересечение прямой линии с плоскостью общего положения
- § 26. Построение линии пересечения двух плоскостей по точкам
- 166). Рассмотрим теперь другой способ построения в применении к плоскостям
- 3', Через горизонтальную проекцию которой проведена прямая параллельно
- § 27. Построение прямой линии и плоскости, параллельных между собой
- § 28. Построение взаимно параллельных плоскостей
- § 29. Построение взаимно перпендикулярных прямой и плоскости
- 1) Через точку а провести плоскость (назовем ее ), перпендикулярную к
- 2) Определить точку к пересечения прямой вс с ил. ;
- 1,2 Дополнительной плоскости и образования, таким образом, системы 3, 1,
- 90°. Аналогично, если пл. Составляет с пл. 2 угол ?, а прямая am,
- § 30. Построение взаимно перпендикулярных плоскостей
- 194 Горизонтально-проецирующая плоскость проходит через точку к
- § 31. Построение проекций угла между прямой и плоскостью и между двумя
- Глава V. Способы перемены плоскостей проекций и вращения
- § 32. Приведение прямых линий и плоских фигур
- 1) Введением дополнительных плоскостей проекций так, чтобы прямая линия
- 2) Изменением положения прямой линии или плоской фигуры путем поворота
- § 33. Способ перемены плоскостей проекций 1)
- 1. Тем самым пл. 3 окажется перпендикулярной к пл. 1 (т. Е. Явится
- 206 Такой точкой служит точка n, взятая на следе f"о; построена ее проекция
- 3 Равны между собой и выражаются, например, отрезком а'2; взяв ось 3/4
- 3 % 1 И 3 % abc, а 4 %3 и 4 || abc. Заключительная стадия построения
- 4 Проведена параллельно пл. Abc, что и приводит к определению натурального
- § 34. Основы способа вращения ')
- § 35. Вращение точки, отрезка прямой, плоскости вокруг оси,
- 1. Пусть точка а вращается вокруг оси, перпендикулярной к пл. 1 (рис.
- 212). Через точку а проведена пл. , перпендикулярная к оси вращения и,
- 2. Теперь рассмотрим поворот отрезка_прямой линии вокруг заданной оси.
- 3. Поворот плоскости вокруг заданной оси сводится к повороту
- 218; Плоскость общего положения повернута на угол вокруг оси,
- 218 Упрощение состоит в том, что отпала горизонталь. Она понадобилась бы в
- 218 Пришлось бы взять две вспомогательные линии.
- 2. Если взять ось вращения, перпендикулярную к пл. 1 то можно пл.
- § 36. Применение способа вращения без указания на чертеже осей
- 1 И, следовательно, проекция
- § 37. Вращение точки, отрезка прямой, плоскости вокруг оси,