§ 7. Точка в четвертях и октантах пространства
В § 4 было сказано, что плоскости 1 и 2 при пересечении образуют
четыре двугранных утла; их называют квадрантами или четвертями пространства.
На рис. 28 указан принятый порядок отсчета четвертей. Ось проекций делит
каждую из плоскостей 1 и 2 на "полы" (полуплоскости), условно обозначенные
1 и -- 1, 2 и -- 2. Если, например, точка расположена во второй
четверти, то горизонтальная проекция получается на -- 1, а фронтальная --
на 2.
В дальнейшем изложении за основу для построения чертежа точки в любой
из четырех четвертей мы будем брать рисунок по типу 13 (см. с. 16).
Считают, что зритель всегда находится в первой четверти (условно -- на
бесконечно большом расстоянии от 1 и от 2). Плоскости проекций считают
непрозрачными; поэтому видимы только точки, расположенные в первой четверти,
а также на полуплоскостях и 2.
20
На рис. 13 дан чертеж для случая, когда точка расположена в первой
четверти (рис. 29). Если точка одинаково удалена от и 2, то А'АХ = А"АХ.
На рис. 30 показана точка В, расположенная во второй четверти, т. е.
над -- % и сзади 2 (рис. 29). Точка В ближе к 2, чем к -- ,: на чертеже
В'ВХ < В"ВЖ. Там же
III
Рис. 28 Рис. 29
показана точка С, одинаково удаленная от -! и от 2: проекции С" и С'
совпадают между собой.
На рис. 31 дан чертеж для случая, когда точка D расположена в третьей
четверти. Горизонтальная проекция получается над осью проекций, фронтальная
проекция -- под осью проекций. Так как D'DX > D"DX, то точка D
расположена от --2 дальше, чем от --.
На рис. 32 даны точки и F, расположенные в четвертой четверти. Точка
Е ближе к ,, чем к -- 2 (рис. 29): Е"ЕХ < Е'ЕХ. Точка F одинаково
удалена от -- 2 и от ..: F'FX = F"FX.
На рис. 33 в системе ,, 2 изображены точки А и В, расположенные
симметрично относительно пл. ,. На чертеже (рис. 33, справа) горизонтальные
проекции
Рис. 31 Рис. 33
таких точек совпадают одна с другой, фронтальные же проекции находятся
на равных расстояниях от оси проекций: А"АХ = В"ВХ.
В практике черчения имеет место применение первой и третьей четвертей
пространства. Подробнее см. в § 41.
На рис. 27 было показано, что плоскости координат в своем пересечении
образуют восемь трехгранных углов -- восемь октантов. Нумерация октантов
указана на рис.27. Как видно из рис.28, четверти нумеруются как I--IV
октанты.
21
Применяя для отсчета координат точки систему знаков, указанную на рис.
27, получим следующую таблицу:
| Знаки координат |
| Знаки координат |
| |||
|
| У |
|
|
| У | z |
I | + | + | + | V |
| + | + |
| + | _ | + | VI | -- | -- | + |
III | + | _ | _ | VII | _ | _ | _ |
IV | + | + | - | VIII | - | + | - |
Например, точка (--20; + 15; --18) находится в восьмом октанте.
Совмещение плоскостей производится согласно рис. 34, т. е. пл. 3 отводится
против часовой стрелки, если смотреть на пл. ! по направлению от +z к О.
Рис. 34
На рис. 34 даны также чертежи точек: А, расположенной в первом октанте,
и С, расположенной в седьмом октанте; проекции одной и той же точки не могут
наложиться одна на другую. Для остальных октантов две или все три (для
второго и восьмого октантов) проекции одной и той же точки могут оказаться
наложенными друг на друга.
ВОПРОСЫ К §§ 6-7
1. Что такое прямоугольные декартовы координаты точки?
2. В какой последовательности записываются координаты в обозначении
точки?
3. Что такое квадранты или четверти пространства?
4. Что такое октанты?
5. Какие знаки имеют координаты точки, расположенной в седьмом октанте?
6. В чем различие между "правой" и "левой" системами координат?
Чем различаются между собой чертежи точек, из которых одна расположена
в первой четверти, а другая -- в третьей?
- 10. Проекции линий -- по проекциям точек, определяющих линию; кроме
- 11. Обозначение плоскостей, заданных следами:
- 12. При преoбaзoвaнии эпюра (чертежа) вращением (или совмещением) в
- 13. Плоскость проекций (картинная плоскость) в аксонометрии -- буквой
- 2) В основе этого слова латинское projectio -- бросание
- Глава I образование проекций
- § 1. Проекции центральные
- § 2. Проекции параллельные
- 5). Так построенные проекции называются параллельными.
- 1) Перспективные проекции в программу данного курса не
- § 3. Метод монжа
- 1) Теперь Петербургский государственный университет путей
- XIX столетии н. Г. Уже получила значительное научное развитие. Очевидно, для
- Глава II точка и прямая
- § 4. Точка в системе двух плоскостей проекций 1,2
- 2. Проведя из а перпендикуляры к и 2, получаем проекции точки а:
- 1) Метод проекций с числовыми отметками в программу
- 1) Ёриге (франц.) -- чертеж, проект. Иногда вместо "эпюр"
- § 5. Точка в системе трех плоскостей проекций 1, 2, 3
- 15): Обозначенная буквой 3 плоскость перпендикулярна и к 1 и к 2. Ее
- § 6. Ортогональные проекции и система прямоугольных координат
- 2) Ordinata (лат.) -- от ordinatim ducta (лат.) -- подряд
- 3) Applicata (лат.) -- приложенная.
- 26 Показана точка к, полученная в пересечении трех плоскостей, из которых
- § 7. Точка в четвертях и октантах пространства
- § 8. Образование дополнительных систем плоскостей проекций
- 1; Равном aa' и а"ах.
- 2/ 1) Введена еще ось 4/1; она выбирается согласно условиям,
- 1) Это обозначение оси соответствует ранее принятому -- х.
- § 9. Чертежи без указания осей проекций
- 2 В новое положение (на рис. 43 положение 45) в направлении
- 1) Биссекторная плоскость двугранного угла -- плоскость,
- § 10. Проекции отрезка прямой линии
- 1) Вывод см. В § 13.
- § 11. Особые (частные) положения прямой линии относительно плоскостей
- 1. Прямая параллельна плоскостям 1 и 2 (рис. 54), т. Е.
- 2. Прямая параллельна плоскостям , и 3 (рис. 55), т. Е.
- 3. Прямая параллельна плоскостям 2 и 3 (рис. 56), т. Е.
- § 12. Точка на прямой. Следы прямой
- 63) Задана проекция с", то, очевидно, надо разделить а'в' в том же
- § 13. Построение на чертеже натуральной величины
- 1Определены из прямоугольного треугольника, построенного на проекции а'в'
- 2А'в' равны каждый 45° (см. § 10).
- 2 Системой 4, 1, выбрав пл. 4% 1 и параллельно заданному на чертеже
- 1 || А'в1); проекция выражает
- § 14. Взаимное положение двух прямых
- § 15. О проекциях плоских углов
- 1. Если плоскость, которой расположен некоторый угол, перпендикулярна
- 2. Если плоскость прямого угла не перпендикулярна к плоскости проекций
- 3. Если проекция плоского угла представляет собой прямой угол, то
- 4. Если проекция некоторого угла, у которого одна сторона параллельна
- 2) Интересующихся доказательством обратных теорем отсылаем к
- 5. Ecли плоскость тупого или острого угла не перпендикулярна к
- 6. Если обе стороны любого угла, параллельны плоскости проекций, то его
- 0; С°в° || св. Пл. , проведенная через точку с перпендикулярно к св,
- Глава III. Плоскость
- § 16. Различные способы задания плоскости на чертеже
- § 17. Следы плоскости
- § 18. Прямая и точка в плоскости. Прямые особого положения
- 1) Прямая принадлежит плоскости, если она проходит через две точки,
- 2) Прямая принадлежит плоскости, если она проходит через точку,
- 2) Для линии ската плоскости распространено название "линия
- 108, Справа, на котором изображена пл. И прямая mb, устанавливаем, что эта
- § 19. Положения плоскости относительно плоскостей проекций
- 1. Плоскость, не перпендикулярная ни к одной из плоскостей проекций,
- 2. Но, может быть, эта плоскость перпендикулярна к 3? Нет, горизонталь
- 110, 111, 113, 116, А также рис. 102, 104, 107, слева, 108, 115, справа,
- 117, 119, На которых плоскости выражены следами. Плоскость общего положения
- 1 2 , То рассматриваемая плоскость может быть определена как плоскость,
- 2. Если плоскости перпендикулярны лишь к одной из плоскостей проекций,
- 1, 2 С указанием оси и следов f"о и h'о
- 129). Следы ее f 0 и h0 сливаются с осью х; в этом случае необходимо иметь
- 130: Плоскость задана двумя пересекающимися прямыми, из которых одна (ab)
- 3. Если плоскости перпендикулярны к двум плоскостям проекций, то также
- § 20. Проведение проецирующей плоскости через прямую линию
- § 21. Построение проекций плоских фигур
- 1 Или к 2. Например, на рис. 123 плоскость треугольника
- 140, Проецируется на пл. 1 без искажения.
- 2) Ортоцентр треугольника.
- Глава IV. Взаимное положение двух плоскостей, прямой линии и плоскости
- § 22. Обзор взаимных положений двух плоскостей, прямой линии и
- § 23. Пересечение прямой линии с плоскостью, перпендикулярной к одной
- § 24. Построение линии пересечения двух плоскостей
- 1, В своем пересечении определяют первую точку, к1, линии пересечения
- 1'2', И 3'4', следует для проекций 5'6' и 7'8' взять по одной
- 167 Показывает, что и пересекаются между собой, хотя их горизонтали
- § 25. Пересечение прямой линии с плоскостью общего положения
- § 26. Построение линии пересечения двух плоскостей по точкам
- 166). Рассмотрим теперь другой способ построения в применении к плоскостям
- 3', Через горизонтальную проекцию которой проведена прямая параллельно
- § 27. Построение прямой линии и плоскости, параллельных между собой
- § 28. Построение взаимно параллельных плоскостей
- § 29. Построение взаимно перпендикулярных прямой и плоскости
- 1) Через точку а провести плоскость (назовем ее ), перпендикулярную к
- 2) Определить точку к пересечения прямой вс с ил. ;
- 1,2 Дополнительной плоскости и образования, таким образом, системы 3, 1,
- 90°. Аналогично, если пл. Составляет с пл. 2 угол ?, а прямая am,
- § 30. Построение взаимно перпендикулярных плоскостей
- 194 Горизонтально-проецирующая плоскость проходит через точку к
- § 31. Построение проекций угла между прямой и плоскостью и между двумя
- Глава V. Способы перемены плоскостей проекций и вращения
- § 32. Приведение прямых линий и плоских фигур
- 1) Введением дополнительных плоскостей проекций так, чтобы прямая линия
- 2) Изменением положения прямой линии или плоской фигуры путем поворота
- § 33. Способ перемены плоскостей проекций 1)
- 1. Тем самым пл. 3 окажется перпендикулярной к пл. 1 (т. Е. Явится
- 206 Такой точкой служит точка n, взятая на следе f"о; построена ее проекция
- 3 Равны между собой и выражаются, например, отрезком а'2; взяв ось 3/4
- 3 % 1 И 3 % abc, а 4 %3 и 4 || abc. Заключительная стадия построения
- 4 Проведена параллельно пл. Abc, что и приводит к определению натурального
- § 34. Основы способа вращения ')
- § 35. Вращение точки, отрезка прямой, плоскости вокруг оси,
- 1. Пусть точка а вращается вокруг оси, перпендикулярной к пл. 1 (рис.
- 212). Через точку а проведена пл. , перпендикулярная к оси вращения и,
- 2. Теперь рассмотрим поворот отрезка_прямой линии вокруг заданной оси.
- 3. Поворот плоскости вокруг заданной оси сводится к повороту
- 218; Плоскость общего положения повернута на угол вокруг оси,
- 218 Упрощение состоит в том, что отпала горизонталь. Она понадобилась бы в
- 218 Пришлось бы взять две вспомогательные линии.
- 2. Если взять ось вращения, перпендикулярную к пл. 1 то можно пл.
- § 36. Применение способа вращения без указания на чертеже осей
- 1 И, следовательно, проекция
- § 37. Вращение точки, отрезка прямой, плоскости вокруг оси,