Преимущества и недостатки методов
Метод половинного деления требует отделения корня, и для достижения высокой точности приходится вычислять функцию много раз. Достижение заданной точности в этом методе гарантировано.
Метод Ньютона обладает очень быстрой сходимостью (квадратичная сходимость), т.е.
,
где c – точное значение корня; M – некоторая константа, зависящая от функции. Грубо говоря, начиная с некоторой итерации, число верных знаков после запятой станет удваиваться на каждой итерации.
Для гарантии сходимости метода Ньютона требуется выполнение довольно многих условий. Вообще говоря, начать вычисления по методу Ньютона можно и без проверки этих условий, но тогда сходимость может не наблюдаться.
Метод секущих обеспечивает для гладких функций скорость сходимости, близкую к скорости сходимости метода Ньютона. Он не требует вычисления производной функции. Если начальная точка взята далеко от корня, то сходимость может отсутствовать.
Метод итераций дает скорость сходимости значительно меньшую, чем метод Ньютона. При наличии сходимости действует оценка , где– числа,,;c –точное значение корня. Величины M, q зависят от функции и не зависят от номера итерации. Если же близок к 1, тоq тоже близко к 1 и сходимость метода будет медленной. Счет по методу итераций можно начать без проверки условий на и. В этом случае процесс может оказаться расходящимся, и тогда ответ не будет получен.
Существует много методов нахождения корней нелинейного уравнения, отличных от перечисленных. В MATHCAD функция root в формате использует метод секущих, а если он не приводит к желаемым результатам, то – метод Мюллера. В последнем, в отличие от метода секущих, на каждом шаге берутся две дополнительные точки, график функции заменяется параболой, проходящей через три точки, и за следующее приближение берется точка пересечения параболы с осьюOx. В функции root в формате root(f(x),x,a,b) используются методы Риддера и Брента. Для нахождения корней многочлена в MATHCAD используется метод Лагерра.
- Оглавление предисловие
- Основные понятия и вычислительные методы (теоретическая часть)
- Метод Гаусса
- Метод lu-разложения
- Обращение матрицы и вычисление определителя
- Число обусловленности матрицы (системы уравнений)
- Вычислительные методы для решения нелинейных уравнений
- Метод половинного деления
- Метод Ньютона (метод касательных)
- Метод секущих
- Метод итераций
- Преимущества и недостатки методов
- Методы решения систем нелинейных уравнений
- Метод Ньютона для систем уравнений
- Метод итераций для систем уравнений
- Некоторые сведения о полиномах и их корнях
- Полиномиальные уравнения
- Вычисление интегралов
- Дифференциальные уравнения (численные методы)
- Жесткие системы дифференциальных уравнений
- Аналитическое решение систем линейных дифференциальных уравнений с постоянными коэффициентами
- Нахождение экстремумов функции нескольких переменных
- Метод покоординатного спуска
- Симплекс-метод
- Метод наискорейшего спуска
- Метод Ньютона
- Преобразования Фурье и Лапласа
- Применение системы mathcad для решения вычислительных задач (практическая часть)
- Исправления
- Продолжение простейших вычислений
- Точность
- Символьные вычисления
- Переменные
- Функции пользователя
- Операции математического анализа
- Построение графиков функций одного переменного
- Задания для самостоятельной работы
- Матрицы
- Векторы
- Системы линейных уравнений
- Число обусловленности матрицы
- Собственные числа и собственные векторы матрицы
- Графики функций двух переменных
- Задания для самостоятельной работы
- Нахождение корней нелинейного уравнения
- Решение систем нелинейных уравнений
- Корни многочлена
- Наибольший общий делитель двух многочленов
- Кратные корни
- Результант
- Задания для самостоятельной работы
- Полиномиальные уравнения
- Вычисление определенных интегралов
- Решение дифференциальных уравнений
- Задания для самостоятельной работы
- Системы дифференциальных уравнений
- Решение жестких систем дифференциальных уравнений
- Решение линейных систем дифференциальных уравнений с постоянными коэффициентами
- Задания для самостоятельной работы
- Нахождение экстремумов функции
- Экстремумы функции многих переменных
- Преобразования Фурье и Лапласа
- Дискретное преобразование Фурье
- Задания для самостоятельной работы