Питання для самоконтролю
Що таке нульова й альтернативна гіпотези?
Що таке критична область і область прийняття гіпотези?
Сформулювати алгоритм перевірки правильності нульової гіпотези. Що таке помилки першого та другого роду?
Література
Обов’язкова: [1]. Додаткова:[1], [4], [7].
Тема 13. Елементи теорії регресії
Мета роботи: навчитися з’ясовувати існування залежності між двома або декількома статистичними ознаками, вміти описати її рівнянням, розуміти зміст параметрів в рівнянні регресії.
План вивчення теми
Рівняння лінійної парної регресії.
Визначення параметрів ,.
Властивості , .
Множинна регресія.
Методичні рекомендації до самостійної роботи
1. Рівняння лінійної парної регресії
Нехай між змінними Х та теоретично існує певна лінійна залежність. Це твердження може ґрунтуватися на тій підставі, наприклад, що кореляційне поле для пар (;) має такий вигляд як на рисунку.
Як бачимо, насправді між ознаками X і спостерігається не такий тісний в'язок, як це передбачає функціональна залежність. Окремі спостережувані значення у, як правило, відхилятимуться від передбаченої лінійної залежності під впливом випадкових збудників, які здебільшого є невідомими. Відхилення від передбаченої лінійної форми зв'язку можуть статися внаслідок неправильної специфікації рівняння, тобто ще з самого початку неправильно вибране рівняння, що описує залежність міжX і .
Рис.1 Кореляційне поле
1
0,9
0,8
0,7
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
xi
0
F
0,6
0,55
0,4
0,3
0,2
0,1
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
xi
0
ni
0,149
0,069
0,046
0,023
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
0
ni
6
5
4
3
2
1
xi
f(x)
F(x)
1
x
8
1
x
1
-
Хі
-6
-4
1
3
5
8
Рі
0,1
0,2
0,1
0,2
0,2
0,2
F(x)
1
Будемо вважати, що специфікація рівняння вибрана правильно. Ураховуючи вплив на значення збурювальних випадкових факторів, лінійне рівняння і зв'язкуX і можна подати в такому вигляді:
, (14.1)
де ,є невідомі параметри регресії,є випадковою змінною, що характеризує відхилення у від гіпотетичної теоретичної регресії.
Отже, в рівнянні (14.1) значення «» подається у вигляді суми двох частин: систематичноїі випадкової. Параметри,, є невідомими величинами, а, є випадковою величиною, що має нормальний закон розподілу з числовими характеристиками:М() =0, D() ==соnst. При цьому є некорельованими.
У результаті статистичних спостережень дослідник дістає характеристики для незалежної змінної х і відповідні значення залежної змінної у.
Отже, необхідно визначити параметри ,. Але істинні значення цих параметрів дістати неможливо, оскільки ми користуємося інформацією, здобутою від вибірки обмеженого обсягу. Тому знайдені значення параметрів будуть лише статистичними оцінками істинних (невідомих нам) параметрів,. Ці оцінки позначимо,. Тоді моделі (14.1) відповідатиме статистична оцінка
. (14.2)
- Міністерство фінансів України
- Передмова
- 1. Програма навчальної дисципліни опис навчальної дисципліни «математика для економістів»
- Інструментальні:
- Міжособистісні:
- Системні:
- Спеціальні:
- Тематичний план навчальної дисципліни
- Зміст навчальної дисципліни
- Змістовий модуль 2. Диференціальне числення функції однієї змінної та його застосування в економіці
- Тема 13. Економічна динаміка та її моделювання: диференціальні та різницеві рівняння
- Змістовий модуль 5. Ряди та їх застосування. Елементи математичної економіки
- Тема 14. Ряди та їх застосування
- Тема 15. Елементи фінансової математики та математичної економіки
- 3. Методичні рекомендації до самостійної роботи
- Тема 1. Емпіричні та логічні основи теорії ймовірностей
- План вивчення теми
- Методичні рекомендації до самостійної роботи
- 1. Випадкові події
- 2. Прості та складені випадкові події. Простір елементарних подій
- 3.Операції над подіями
- Питання для самоконтролю
- 2. Елементи комбінаторики
- 3. Геометрична ймовірність
- 4. Статистична ймовірність
- 5. Умовна ймовірність
- 5.1. Залежні та незалежні випадкові події
- 5.2. Обчислення умовної ймовірності
- Література
- 3. Локальна теорема
- 4. Інтегральна теорема
- 5. Використання інтегральної теореми
- 6. Формула Пуассона для малоймовірних випадкових подій
- 7. Проста течія подій
- Питання для самоконтролю
- Функція розподілу ймовірностей
- Щільність ймовірностей (диференціальна функція) її властивості
- Питання для самоконтролю
- Література
- 1.2. Мода та медіана випадкової величини
- 1.3. Дисперсія та середнє квадратичне відхилення
- 1.4. Початкові та центральні моменти
- 7. Розподіл («хі-квадрат»)
- 8. Розподіл Стьюдента
- 2. Коефіцієнт кореляції
- 2. Закон розподілу та числові характеристики функції дискретного випадкового аргументу
- 2. Марковські випадкові процеси. Ланцюги Маркова
- 3. Процес народження і загибелі
- 4. Елементи теорії масового обслуговування
- Питання для самоконтролю
- 2. Генеральна та вибіркова сукупності
- Питання для самоконтролю
- Питання для самоконтролю
- 2. Похибки перевірки гіпотез
- 3. Критерії узгодження для перевірки гіпотез
- 4. Критична область
- Питання для самоконтролю
- 2. Визначення параметрів ,
- 3. Властивості ,
- 4. Множинна регресія
- Питання для самоконтролю
- Питання для самоконтролю
- Питання для самоконтролю
- Задачі для розв’язання
- Література
- Задачі для розв’язання
- Література
- Задачі для розв’язання
- Література
- Задачі для розв’язання
- Література
- Задачі для розв’язання
- Література
- Задачі для розв’язання
- Література
- Задачі для розв’язання
- Література
- Задачі для розв’язання
- Література
- Задачі для розв’язання
- Література
- Задачі для розв’язання
- Література
- Задачі для розв’язання
- Література
- Задачі для розв’язання
- Література
- Задачі для розв’язання
- Література
- Задачі для розв’язання
- Література
- Література
- 5. Методичні рекомендації до виконання індивідуальних завдань
- Методичні вказівки до виконання завдань
- Приклади розв’язків задач для індивідуальної роботи
- Завдання для індивідуальної роботи
- 6. Підсумковий контроль
- 7. Критерії оцінки знань та вмінь студентів
- Самостійна робота студентів
- Практичні заняття
- Модульний контроль
- Індивідуальна робота
- 8. Список рекомендовоної літератури Обов’язкова література
- Додаткова література
- Математика для економістів