5.2. Обчислення умовної ймовірності
Якщо ймовірність випадкової події А обчислюється за умови, що подія В відбулася, то така ймовірність називається умовною. Ця ймовірність обчислюється за формулою
. (2.7)
Формули ймовірностей добутку та суми випадкових подій
Згідно із (2.7) маємо:
. (2.8)
Формула (2.8) має місце в загальному випадку. Якщо події А і В є незалежними то, за означенням, . Для незалежних подій з (2.8) випливає:
. (2.9)
Імовірність суми двох несумісних поді А і В є:
. (2.10)
Імовірність суми двох сумісних поді А і В є:
. (2.11)
7. Імовірність появи хоча б однієї випадкової події
Нехай є n сумісних випадкових подій ,,...,. Позначимо черезподію, яка полягає в тому, що з'явиться хоча б одна з цих подій. Тоді подіяце подія за якої жодна з подій не відбудеться. Подіявизначається як. Подіїтаутворюють повну групу подій, тому
.
Звідси одержуємо
(2.12)
За цією формулою треба обчислювати імовірність появи хоча б однієї випадкової події з n сумісних подій.
1320 11
У разі, коли випадкова подія А може відбутися лише за умови, що відбудеться одна з несумісних випадкових подій ,, ..., які утворюють повну групу і між собою є попарно несумісними, імовірність події А обчислюється за формулою:
. (2.13)
Яка називається формулою повної ймовірності.
Випадкові події ,, ...називаютьгіпотезами.
9. Формула Байєса
Нехай в умовах задачі, що відноситься до формули повної ймовірності, провели одну спробу експерименту, в результаті якої відбулася подія А. Запитується: як змінилися (у зв'язку з тим, що подія А уже відбулася) імовірності гіпотез, тобто величини , k = 1,....,n ?
Знайдемо умовну імовірність . За теоремою добутку ймовірностеймаємо:
, (2.14)
де обчислюється за формулою (2.13).
Формула (2.14) називається формулою Байєса (Томас Байєс, чи Бейєс (1702 – 1761), - англійський математик).
Питання для самоконтролю
В якому разі P(A/B) = 1?
Формула добутку ймовірностей для двох залежних випадкових подій А і В.
Чому дорівнює P, якщо випадкові подіїАi є залежними?
Чому дорівнює Р (A∩B) , якщо А і В є незалежними?
В якому разі P(A/B) = P(A), P(B/A) = P(B)?
Формула для обчислення появи випадкової події хоча б один раз при n незалежних експериментах має вигляд...
Гіпотези у формулі повної ймовірності та їх властивості.
Формула повної ймовірності випадкової події А за наявності n гіпотез Bi.
В якому разі використовується формула Байєса?
В якому разі обирається гіпотеза Bi для прийняття рішення при проведенні експерименту?
- Міністерство фінансів України
- Передмова
- 1. Програма навчальної дисципліни опис навчальної дисципліни «математика для економістів»
- Інструментальні:
- Міжособистісні:
- Системні:
- Спеціальні:
- Тематичний план навчальної дисципліни
- Зміст навчальної дисципліни
- Змістовий модуль 2. Диференціальне числення функції однієї змінної та його застосування в економіці
- Тема 13. Економічна динаміка та її моделювання: диференціальні та різницеві рівняння
- Змістовий модуль 5. Ряди та їх застосування. Елементи математичної економіки
- Тема 14. Ряди та їх застосування
- Тема 15. Елементи фінансової математики та математичної економіки
- 3. Методичні рекомендації до самостійної роботи
- Тема 1. Емпіричні та логічні основи теорії ймовірностей
- План вивчення теми
- Методичні рекомендації до самостійної роботи
- 1. Випадкові події
- 2. Прості та складені випадкові події. Простір елементарних подій
- 3.Операції над подіями
- Питання для самоконтролю
- 2. Елементи комбінаторики
- 3. Геометрична ймовірність
- 4. Статистична ймовірність
- 5. Умовна ймовірність
- 5.1. Залежні та незалежні випадкові події
- 5.2. Обчислення умовної ймовірності
- Література
- 3. Локальна теорема
- 4. Інтегральна теорема
- 5. Використання інтегральної теореми
- 6. Формула Пуассона для малоймовірних випадкових подій
- 7. Проста течія подій
- Питання для самоконтролю
- Функція розподілу ймовірностей
- Щільність ймовірностей (диференціальна функція) її властивості
- Питання для самоконтролю
- Література
- 1.2. Мода та медіана випадкової величини
- 1.3. Дисперсія та середнє квадратичне відхилення
- 1.4. Початкові та центральні моменти
- 7. Розподіл («хі-квадрат»)
- 8. Розподіл Стьюдента
- 2. Коефіцієнт кореляції
- 2. Закон розподілу та числові характеристики функції дискретного випадкового аргументу
- 2. Марковські випадкові процеси. Ланцюги Маркова
- 3. Процес народження і загибелі
- 4. Елементи теорії масового обслуговування
- Питання для самоконтролю
- 2. Генеральна та вибіркова сукупності
- Питання для самоконтролю
- Питання для самоконтролю
- 2. Похибки перевірки гіпотез
- 3. Критерії узгодження для перевірки гіпотез
- 4. Критична область
- Питання для самоконтролю
- 2. Визначення параметрів ,
- 3. Властивості ,
- 4. Множинна регресія
- Питання для самоконтролю
- Питання для самоконтролю
- Питання для самоконтролю
- Задачі для розв’язання
- Література
- Задачі для розв’язання
- Література
- Задачі для розв’язання
- Література
- Задачі для розв’язання
- Література
- Задачі для розв’язання
- Література
- Задачі для розв’язання
- Література
- Задачі для розв’язання
- Література
- Задачі для розв’язання
- Література
- Задачі для розв’язання
- Література
- Задачі для розв’язання
- Література
- Задачі для розв’язання
- Література
- Задачі для розв’язання
- Література
- Задачі для розв’язання
- Література
- Задачі для розв’язання
- Література
- Література
- 5. Методичні рекомендації до виконання індивідуальних завдань
- Методичні вказівки до виконання завдань
- Приклади розв’язків задач для індивідуальної роботи
- Завдання для індивідуальної роботи
- 6. Підсумковий контроль
- 7. Критерії оцінки знань та вмінь студентів
- Самостійна робота студентів
- Практичні заняття
- Модульний контроль
- Індивідуальна робота
- 8. Список рекомендовоної літератури Обов’язкова література
- Додаткова література
- Математика для економістів