4. Критична область
Після обрання певного критерію узгодження, множину усіх його можливих значень поділяють на дві підмножини, що не перетинаються: одна з них містить значення критерію, при яких основна гіпотеза відхиляється, а друга - при яких вона приймається.
Означення 3. Критичною областю називають сукупність значень критерію, при яких основна гіпотеза відхиляється.
Означення 4. Областю прийняття гіпотези (областю допустимих значень) називають множину значень критерію, при яких гіпотезу приймають.
Критерій узгодження К - одновимірна випадкова величина, усі її можливі значення належать деякому інтервалу. Тому критична область та область прийняття гіпотези також будуть інтервалами, а це означає, що існують точки, які ці інтервали відокремлюють.
Означення 5. Критичними точками (межами) критерію К називають точки , які відокремлюють критичну область від області прийняття гіпотези.
Означення 6. Правобічною називають критичну область, що визначається нерівністю К > , де - додатне число.
Означення 7. Лівобічною називають критичну область, гир визначається нерівністю де - від'ємне число.
Для кожного критерію узгодження є відповідні таблиці, які дозволяють знайти таку точку , яка задовольняє потрібну умову.
Означення 8. Потужністю критерію називають імовірність належності критерію критичній області при умові, що правильна альтернативна гіпотеза.
Іншими словами, потужність критерію є імовірність того, що основна гіпотеза буде відхилена, якщо альтернативна гіпотеза правильна.
Якщо рівень значущості а вже обрано, то критичну область доцільно будувати так, щоб потужність критерію була максимальною. Виконання цієї вимоги забезпечує мінімальну імовірність похибки другого роду.
Зауваження.. Єдиний спосіб одночасного зменшення ймовірностей похибок першого та другого роду це є збільшення об'єму вибірки.
- Міністерство фінансів України
- Передмова
- 1. Програма навчальної дисципліни опис навчальної дисципліни «математика для економістів»
- Інструментальні:
- Міжособистісні:
- Системні:
- Спеціальні:
- Тематичний план навчальної дисципліни
- Зміст навчальної дисципліни
- Змістовий модуль 2. Диференціальне числення функції однієї змінної та його застосування в економіці
- Тема 13. Економічна динаміка та її моделювання: диференціальні та різницеві рівняння
- Змістовий модуль 5. Ряди та їх застосування. Елементи математичної економіки
- Тема 14. Ряди та їх застосування
- Тема 15. Елементи фінансової математики та математичної економіки
- 3. Методичні рекомендації до самостійної роботи
- Тема 1. Емпіричні та логічні основи теорії ймовірностей
- План вивчення теми
- Методичні рекомендації до самостійної роботи
- 1. Випадкові події
- 2. Прості та складені випадкові події. Простір елементарних подій
- 3.Операції над подіями
- Питання для самоконтролю
- 2. Елементи комбінаторики
- 3. Геометрична ймовірність
- 4. Статистична ймовірність
- 5. Умовна ймовірність
- 5.1. Залежні та незалежні випадкові події
- 5.2. Обчислення умовної ймовірності
- Література
- 3. Локальна теорема
- 4. Інтегральна теорема
- 5. Використання інтегральної теореми
- 6. Формула Пуассона для малоймовірних випадкових подій
- 7. Проста течія подій
- Питання для самоконтролю
- Функція розподілу ймовірностей
- Щільність ймовірностей (диференціальна функція) її властивості
- Питання для самоконтролю
- Література
- 1.2. Мода та медіана випадкової величини
- 1.3. Дисперсія та середнє квадратичне відхилення
- 1.4. Початкові та центральні моменти
- 7. Розподіл («хі-квадрат»)
- 8. Розподіл Стьюдента
- 2. Коефіцієнт кореляції
- 2. Закон розподілу та числові характеристики функції дискретного випадкового аргументу
- 2. Марковські випадкові процеси. Ланцюги Маркова
- 3. Процес народження і загибелі
- 4. Елементи теорії масового обслуговування
- Питання для самоконтролю
- 2. Генеральна та вибіркова сукупності
- Питання для самоконтролю
- Питання для самоконтролю
- 2. Похибки перевірки гіпотез
- 3. Критерії узгодження для перевірки гіпотез
- 4. Критична область
- Питання для самоконтролю
- 2. Визначення параметрів ,
- 3. Властивості ,
- 4. Множинна регресія
- Питання для самоконтролю
- Питання для самоконтролю
- Питання для самоконтролю
- Задачі для розв’язання
- Література
- Задачі для розв’язання
- Література
- Задачі для розв’язання
- Література
- Задачі для розв’язання
- Література
- Задачі для розв’язання
- Література
- Задачі для розв’язання
- Література
- Задачі для розв’язання
- Література
- Задачі для розв’язання
- Література
- Задачі для розв’язання
- Література
- Задачі для розв’язання
- Література
- Задачі для розв’язання
- Література
- Задачі для розв’язання
- Література
- Задачі для розв’язання
- Література
- Задачі для розв’язання
- Література
- Література
- 5. Методичні рекомендації до виконання індивідуальних завдань
- Методичні вказівки до виконання завдань
- Приклади розв’язків задач для індивідуальної роботи
- Завдання для індивідуальної роботи
- 6. Підсумковий контроль
- 7. Критерії оцінки знань та вмінь студентів
- Самостійна робота студентів
- Практичні заняття
- Модульний контроль
- Індивідуальна робота
- 8. Список рекомендовоної літератури Обов’язкова література
- Додаткова література
- Математика для економістів