Лабы
Обращение матрицы и вычисление определителя
Задача обращения матрицы сводится к решению матричного уравнения , которое эквивалентно решениюn систем линейных уравнений
, , . . ..
Столбцы являются столбцами матрицы. Важно то, что во всех этих системах матрица коэффициентов одна и та же. Поэтому ееLU-разложение достаточно выполнить только один раз.
Для вычисления определителя достаточно получить LU-разложение:
, .
Кроме указанных выше методов имеются и другие методы решения систем уравнений и обращения матриц.
Трудоемкость решения системы уравнений методом Гаусса, LU-разложения, обращения матрицы и вычисления определителя приблизительно одинаковая, для выполнения этих действий требуется выполнение порядка операций сложения и умножения.
Содержание
- Оглавление предисловие
- Основные понятия и вычислительные методы (теоретическая часть)
- Метод Гаусса
- Метод lu-разложения
- Обращение матрицы и вычисление определителя
- Число обусловленности матрицы (системы уравнений)
- Вычислительные методы для решения нелинейных уравнений
- Метод половинного деления
- Метод Ньютона (метод касательных)
- Метод секущих
- Метод итераций
- Преимущества и недостатки методов
- Методы решения систем нелинейных уравнений
- Метод Ньютона для систем уравнений
- Метод итераций для систем уравнений
- Некоторые сведения о полиномах и их корнях
- Полиномиальные уравнения
- Вычисление интегралов
- Дифференциальные уравнения (численные методы)
- Жесткие системы дифференциальных уравнений
- Аналитическое решение систем линейных дифференциальных уравнений с постоянными коэффициентами
- Нахождение экстремумов функции нескольких переменных
- Метод покоординатного спуска
- Симплекс-метод
- Метод наискорейшего спуска
- Метод Ньютона
- Преобразования Фурье и Лапласа
- Применение системы mathcad для решения вычислительных задач (практическая часть)
- Исправления
- Продолжение простейших вычислений
- Точность
- Символьные вычисления
- Переменные
- Функции пользователя
- Операции математического анализа
- Построение графиков функций одного переменного
- Задания для самостоятельной работы
- Матрицы
- Векторы
- Системы линейных уравнений
- Число обусловленности матрицы
- Собственные числа и собственные векторы матрицы
- Графики функций двух переменных
- Задания для самостоятельной работы
- Нахождение корней нелинейного уравнения
- Решение систем нелинейных уравнений
- Корни многочлена
- Наибольший общий делитель двух многочленов
- Кратные корни
- Результант
- Задания для самостоятельной работы
- Полиномиальные уравнения
- Вычисление определенных интегралов
- Решение дифференциальных уравнений
- Задания для самостоятельной работы
- Системы дифференциальных уравнений
- Решение жестких систем дифференциальных уравнений
- Решение линейных систем дифференциальных уравнений с постоянными коэффициентами
- Задания для самостоятельной работы
- Нахождение экстремумов функции
- Экстремумы функции многих переменных
- Преобразования Фурье и Лапласа
- Дискретное преобразование Фурье
- Задания для самостоятельной работы