logo search
Теорія ймовірностей Ден

Питання для самоконтролю

  1. Дати визначення генеральної та вибіркової сукупності.

  2. Що називається варіантою?

  3. Дати визначення дискретного статистичного розподілу вибірки.

  4. Що називається емпіричною функцією?

  5. Властивості .

  6. Що називається інтервальним статистичним розподілом вибірки?

  7. Що являє собою полігон частот і відносних частот?

  8. Що називається гістограмою частот і відносних частот?

Література

Обов’язкова: [1]. Додаткова:[1], [4], [7].

Тема 11. Статистичне та інтервальне оцінювання параметрів розподілу

Мета роботи: вивчити поняття точкової та інтервальної оцінки, їх види і методи обчислення.

План вивчення теми

  1. Точкові та інтервальні оцінки параметрів розподілу.

  2. Довірча ймовірність.

  3. Довірчий інтервал.

Методичні рекомендації до самостійної роботи

Означення 1. Точковими оцінками параметрів розподілу генеральної сукупності називають такі оцінки, які визначаються одним числом.

Наприклад, вибіркова середня хв, вибіркова дисперсія та вибіркове середньоквадратичне - точкові оцінки відповідних числових характеристик генеральної сукупності.

Точкові оцінки параметрів розподілу є випадковими величинами, їх можна вважати первинними результатами обробки вибірки тому, що невідомо, з якою точністю кожна з них оцінює відповідну числову характеристику генеральної сукупності.

Якщо об'єм вибірки досить великий, то точкові оцінки задовольняють практичні потреби точності.

Якщо об'єм вибірки малий, то точкові оцінки можуть давати значні похибки, тому питання точності оцінок у цьому випадку дуже важливе і використовують інтервальні оцінки.

Означення 2. Інтервальною називають оцінку, яка визначається двома числами — кінцями інтервалу.

Інтервальні оцінки дозволяють встановити точність та надійність оцінок. Ознайомимось з цими поняттями.

Нехай знайдена за даними вибірки статистична оцінка будеоцінкою невідомого параметра .

Ясно, що тим точніше визначає , чим менше абсолютна величина різниці -.

Але статистичні методи не дозволяють категорично стверджувати, що оцінка задовольняє нерівність .

Таке твердження можна зробити лише з імовірністю .

Означення 3. Надійністю (довірчою ймовірністю) оцінки параметра за називають імовірність

(11.1)

з якою виконується нерівність: .

Найчастіше число задається наперед і, залежно від обставин, воно дорівнює 0,95 або 0,99 або 0,999.

Формулу (11.1) можна записати у вигляді

З цієї рівності випливає, що інтервал містить невідомий параметр генеральної сукупності.

Означення 4. Інтервал називають довірчим, якщо він покриває невідомий параметр із заданою надійністю.

Зауваження. Кінці довірчого інтервалу є випадковими величинами.