3.2. Арифметичні операції зі збіжними послідовностями
Теорема 9.
1) Якщо , – нескінченно малі послідовності, то – нескінченно мала послідовність (сума і різниця нескінченно малих є нескінченно мала).
2) Якщо – нескінченно мала, – обмежена послідовність, то – нескінченно мала (добуток нескінченно малої на обмежену є нескінченно мала).
3) Якщо – нескінченно велика, то – нескінченно мала.
4) Якщо – нескінченно мала, , то – нескінченно велика.
Доведення.
1. ; .
Позначимо , тоді
.
2. – обмежена послідовність , .
Тоді маємо .
Теорема 10. Якщо є дві збіжні послідовності і , , то:
1. ;
2. ;
3. при .
Доведення.
За теоремою 8 маємо: , , де – нескінченно малі.
1. . За теоремою 9 – нескінченно мала, значить за теоремою 8:
.
2. . За теоремою 9 – нескінченно мала, значить за теоремою 8:
.
3.
Очевидно, вираз в квадратних дужках є нескінченно мала. Доведемо, що – обмежена. . Оскільки , то для числа . Тому при – обмежена. За теоремою 9 – нескінченно мала, за теоремою 8 .
- Передмова
- Логічна символіка
- 1. Елементи теорії множин
- 1.1. Операції над множинами
- 1.2. Поняття відображення або функції
- 1.3. Еквівалентні множини. Потужність множини
- 1.3.1. Властивості еквівалентних множин
- 1.4. Зліченні множини
- 1.5. Метод математичної індукції
- 1.5.1. Аксіоми натуральних чисел
- 1.5.2. Метод математичної індукції
- 1.6. Біноміальні коефіцієнти. Біном Ньютона
- 2. Аксіоматика дійсних чисел
- 1. Операція додавання.
- 2. Операція множення.
- 3. Зв’язок операцій додавання і множення.
- 4. Аксіома упорядкованості.
- 5. Аксіома неперервності.
- 2.1. Наслідки із аксіом
- 2.1.1. Властивості операцій додавання і множення
- 2.5. Обмежені і необмежені множини. Верхня і нижня межі
- 2.6. Точна верхня і точна нижня межі множини
- 2.7. Принцип Архімеда
- 2.8. Принцип вкладених відрізків
- 2.9. Незліченність відрізка
- 2.10. Теорема про скінченне покриття
- 2.11. Теорема про граничну точку
- 3. Границя числової послідовності
- 3.1. Теореми про границі
- 3.2. Арифметичні операції зі збіжними послідовностями
- 3.3. Монотонні послідовності. Теорема Веєрштраса
- 3.4. Число
- 3.5. Підпослідовності
- 3.6. Фундаментальні послідовності. Критерій Коші
- 3.7. Найбільша і найменша часткова границя
- 4. Границя і неперервність функції
- 4.1. Основні елементарні функції
- 4.2. Границя функції
- 4.2.1. Лівостороння й правостороння границі
- 4.3. Нескінченно малі й нескінченно великі функції
- 4.4. Властивості функцій, що мають границю
- 4.5. Критерій Коші існування границі функції
- 4.6. Неперервність функції
- 4.6.1. Неперервність суперпозиції функцій
- 4.6.2. Одностороння неперервність
- 4.6.3. Класифікація точок розриву функції
- 4.7. Границі і неперервність монотонних функцій
- 4.8. Неперервність елементарних функцій
- 4.9. Важливі границі
- 4.10. Порівняння функцій. Еквівалентні функції
- 5. Неперервні функції на відрізках
- 5.1. Рівномірна неперервність. Теорема Кантора
- 6. Диференціальне обчислення функції однієї змінної
- 6.1. Означення похідної