Передмова
Цей навчальний посібник базується на курсі лекцій, що читаються авторами студентам I курсу математичного факультету Східноукраїнського національного університету імені Володимира Даля.
Зміст посібника – це курс диференціального і інтегрального обчислення функції однієї змінної, тобто той матеріал, який становить основу будь-якого курсу вищої математики. Рівень викладання відповідає рівню фізико-математичних спеціальностей вузів, однак автори сподіваються, що посібник буде корисний студентам всіх природничих, технічних та економічних спеціальностей, вивчення яких передбачає ґрунтовну математичну підготовку.
Автори також сподіваються на те, що наявність даного посібника у студентів дозволить зменшити непродуктивну, механічну складову навчального процесу і цим допоможе студентам більше зосередитися на змістовній і творчій складовій своєї праці.
Розділ 1
ДИФЕРЕНЦіАЛЬНЕ обчислення
ФУНкції ОДНієї змінної
- Передмова
- Логічна символіка
- 1. Елементи теорії множин
- 1.1. Операції над множинами
- 1.2. Поняття відображення або функції
- 1.3. Еквівалентні множини. Потужність множини
- 1.3.1. Властивості еквівалентних множин
- 1.4. Зліченні множини
- 1.5. Метод математичної індукції
- 1.5.1. Аксіоми натуральних чисел
- 1.5.2. Метод математичної індукції
- 1.6. Біноміальні коефіцієнти. Біном Ньютона
- 2. Аксіоматика дійсних чисел
- 1. Операція додавання.
- 2. Операція множення.
- 3. Зв’язок операцій додавання і множення.
- 4. Аксіома упорядкованості.
- 5. Аксіома неперервності.
- 2.1. Наслідки із аксіом
- 2.1.1. Властивості операцій додавання і множення
- 2.5. Обмежені і необмежені множини. Верхня і нижня межі
- 2.6. Точна верхня і точна нижня межі множини
- 2.7. Принцип Архімеда
- 2.8. Принцип вкладених відрізків
- 2.9. Незліченність відрізка
- 2.10. Теорема про скінченне покриття
- 2.11. Теорема про граничну точку
- 3. Границя числової послідовності
- 3.1. Теореми про границі
- 3.2. Арифметичні операції зі збіжними послідовностями
- 3.3. Монотонні послідовності. Теорема Веєрштраса
- 3.4. Число
- 3.5. Підпослідовності
- 3.6. Фундаментальні послідовності. Критерій Коші
- 3.7. Найбільша і найменша часткова границя
- 4. Границя і неперервність функції
- 4.1. Основні елементарні функції
- 4.2. Границя функції
- 4.2.1. Лівостороння й правостороння границі
- 4.3. Нескінченно малі й нескінченно великі функції
- 4.4. Властивості функцій, що мають границю
- 4.5. Критерій Коші існування границі функції
- 4.6. Неперервність функції
- 4.6.1. Неперервність суперпозиції функцій
- 4.6.2. Одностороння неперервність
- 4.6.3. Класифікація точок розриву функції
- 4.7. Границі і неперервність монотонних функцій
- 4.8. Неперервність елементарних функцій
- 4.9. Важливі границі
- 4.10. Порівняння функцій. Еквівалентні функції
- 5. Неперервні функції на відрізках
- 5.1. Рівномірна неперервність. Теорема Кантора
- 6. Диференціальне обчислення функції однієї змінної
- 6.1. Означення похідної