Задания для самостоятельной работы
Найдите на квадрате рис. 50 экстремумы функции .
Найдите в шаре радиуса 2 четырехмерного пространства с центром в начале координат экстремумы функции .
Найдите непрерывное и дискретное преобразования Фурье функции Период и число точек для дискретного преобразования подберите так, чтобы его значения и значения непрерывного преобразования отличались меньше, чем на 0.05. Постройте график модуля преобразования Фурье.
Пусть функция является преобразованием Фурье функции. Постройте график, найдите частоты, на которых эта функция достигает максимума, укажите ее максимальные значения.
Найдите изображение функции .
Найдите оригинал для функции .
Библиографический список
Дьяконов, В. MATHCAD 8/2000: специальный справочник / В.Дьяконов. – СПб: Питер, 2000. – 592 с.
Плис, А.И. Mathcad:математический практикум для инженеров и экономистов: учеб. пособие для вузов / А.И. Плис, Н.А. Сливина. – 2-е изд., перераб. и доп. – М.: Финансы и статистика, 2003. – 656 с.
Вержбицкий, В.М. Основы численных методов: учеб. для вузов / В.М.Вержбицкий. – М.: Высш. шк., 2002. – 840 с.
Бахвалов, Н.С. Численные методы / Н.С. Бахвалов, Н.П. Жидков, Г.М. Кобельков. – М.: Лаборатория Базовых Знаний, 2001. – 632 с.
- Оглавление предисловие
- Основные понятия и вычислительные методы (теоретическая часть)
- Метод Гаусса
- Метод lu-разложения
- Обращение матрицы и вычисление определителя
- Число обусловленности матрицы (системы уравнений)
- Вычислительные методы для решения нелинейных уравнений
- Метод половинного деления
- Метод Ньютона (метод касательных)
- Метод секущих
- Метод итераций
- Преимущества и недостатки методов
- Методы решения систем нелинейных уравнений
- Метод Ньютона для систем уравнений
- Метод итераций для систем уравнений
- Некоторые сведения о полиномах и их корнях
- Полиномиальные уравнения
- Вычисление интегралов
- Дифференциальные уравнения (численные методы)
- Жесткие системы дифференциальных уравнений
- Аналитическое решение систем линейных дифференциальных уравнений с постоянными коэффициентами
- Нахождение экстремумов функции нескольких переменных
- Метод покоординатного спуска
- Симплекс-метод
- Метод наискорейшего спуска
- Метод Ньютона
- Преобразования Фурье и Лапласа
- Применение системы mathcad для решения вычислительных задач (практическая часть)
- Исправления
- Продолжение простейших вычислений
- Точность
- Символьные вычисления
- Переменные
- Функции пользователя
- Операции математического анализа
- Построение графиков функций одного переменного
- Задания для самостоятельной работы
- Матрицы
- Векторы
- Системы линейных уравнений
- Число обусловленности матрицы
- Собственные числа и собственные векторы матрицы
- Графики функций двух переменных
- Задания для самостоятельной работы
- Нахождение корней нелинейного уравнения
- Решение систем нелинейных уравнений
- Корни многочлена
- Наибольший общий делитель двух многочленов
- Кратные корни
- Результант
- Задания для самостоятельной работы
- Полиномиальные уравнения
- Вычисление определенных интегралов
- Решение дифференциальных уравнений
- Задания для самостоятельной работы
- Системы дифференциальных уравнений
- Решение жестких систем дифференциальных уравнений
- Решение линейных систем дифференциальных уравнений с постоянными коэффициентами
- Задания для самостоятельной работы
- Нахождение экстремумов функции
- Экстремумы функции многих переменных
- Преобразования Фурье и Лапласа
- Дискретное преобразование Фурье
- Задания для самостоятельной работы