logo
ангеом все ответы

15. Поле комплексных чисел. Алгебраическая формула комплексных чисел

Ко́мпле́ксные[1] чи́сла (устар. Мнимые числа[2]), — расширение множества вещественных чисел, обычно обозначается  . Любое комплексное число может быть представлено как формальная сумма  , где   и   — вещественные числа,   — мнимая единица[3].

Комплексные числа образуют алгебраически замкнутое поле — это означает, что многочлен степени   с комплексными коэффициентами имеет ровно   комплексных корней (основная теорема алгебры). Это одна из главных причин широкого применения комплексных чисел в математических исследованиях. Кроме того, применение комплексных чисел позволяет удобно и компактно сформулировать многие математические модели, применяемые в математической физике и в естественных науках — электротехникегидродинамикекартографии,квантовой механикетеории колебаний и многих других.

Поле комплексных чисел можно понимать как расширение поля вещественных чисел, в котором многочлен   имеет корень. Следующие две элементарные модели показывают, что непротиворечивое построение такой системы чисел возможно. Оба приведенных определения приводят к изоморфным расширениям поля вещественных чисел  , как и любые другие конструкции поля разложения многочлена  .

Стандартная модель

Комплексное число можно определить как упорядоченную пару вещественных чисел . Введём операции сложения и умножения таких пар следующим образом: