36 Линейная зависимость трех векторов на плоскости
Утверждение 1. На прямой (на плоскости и в пространстве) существует нулевой вектор (соответственно два неколлиниарных и три некомпланарных вектора) . |
Доказательство. В случае прямой достаточно взять две несовпадающие точки О и А(рис. 1, а), тогда вектор а = ≠ 0. На плоскости достаточно взять три точки О, А и В, не лежащие на одной прямой (рис.1, б), тогда векторы а = и b = неколлиниарны. В пространстве достаточно взять четыре точки О, А, В, С, не лежащие в одной плоскости (рис. 1, в), тогда векторы а = , b = , с = некомпланарны. Теорема доказана.
|
Утверждение 2. На прямой ( на плоскости и в пространстве) всякий вектор линейно выражается через любой ненулевой вектор (соответственно любые два неколлиниарных и любые три некомпанарных вектора). |
Доказательство. 1. Пусть a, b− векторы на прямой и a ≠ 0. Отложим их от одной точки О прямой. Пусть а = , b = (рис. 2, а). Если b = 0, то b = 0a. Если b ≠ 0, то, взяв
согласно определению произведения вектора на число получим, что b = αa. 2. Пусть а, b, с − векторы плоскости и a, b неколлиниарны (значит, ни один из них не равен 0). Отложим эти векторы от одной точки О плоскости. Пусть а = , b = , с = (рис. 2, б). Если с = 0, то с = 0а + 0b. Если с ≠ 0, то проведем из точки С прямые, параллельные прямым ОВ и ОА, до пересечения с прямыми ОА и ОВ соответственно. Пусть точки А1, B1 − точки пересечения этих прямых (существование точек пересечения следует из неколлиниарности и ). Тогда = 1 + 1. Отсюда и из первой части утверждения получим, что c = αa + βb. 3. Пусть a, b, c, d − векторы пространства и a, b, c некомпланарны (значит, попарно неколлиниарны и, тем более, ни один из них не равен 0). Отложим эти векторы от одной точки О. Пусть а = , b = , с = , d = (рис. 2, в). Если d = 0, то d = 0а + 0b + 0c. Если d ≠ 0, то проведем из точки D плоскости, параллельные плоскостям ОВС, ОАС, ОАВ (это плоскости, так как , , попарно неколлиниарны), до пересечения с прямыми ОА, ОВ, ОС соответственно. Пусть А1, B1, C1 −точки пересечения (существование точек пересечения следует из некомпланарности , , ). Тогда = 1 + 1 + 1. Осюда и из первой части утверждения получим, что d = αa + βb + γc. Теорема доказана.
|
Теорема 2.7. Два вектора линейно зависимы тогда и только тогда, когда они коллиниарны. |
Теорема 2.8. Три вектора линейно зависимы тогда и только тогда, когда они компланарны. |
Доказательство. Необходимость. Пусть векторы a, b, c линейно зависимы, тогда один из них линейно выражается через другие. Пусть c = αa + βb. Усли а и b коллиниарны, то а, b, с коллиниарны и, тем более, компланарны. Если a и b неколлинеарны, то отложим векторы a, b, c от одной точки (рис. 2, б). Тогда вектор с, являясь диагональю параллелограмма, построенного на векторах αa и βb, окажется в той же плоскости, что и a, b. Значит, a, b, c компланарны. Достаточность.Пусть a, b, c компланарны, т.е. параллельны одной плоскости. Будем считать, что a, b неколлиниарны (так как если a, b коллиниарны, то линейная зависимость a, b, c следует из линейной зависимости подсистемы). Отложим a, b и с от одной точки. Тогда они окажутся в одной плоскости и на основании утверждения 2 будем иметь c = αa + βb. В силу теоремы 2.2 отсюда следует, что векторы a, b, c линейно зависимы. Теорема доказана. |
- Эквивалентность слау при элементарных преобразованиях
- Описание
- Достоинства метода
- Следствия
- Свойства определителей
- 10. Теорема о разложении определителей по строкам, по столбцам:
- Формулировка
- Разложение определителя по строке (столбцу) (Следствие 1)
- Следствие 2 (фальшивое разложение определителя)
- 11. Теорема Крамера
- Описание метода
- Вычислительная сложность
- 12. Теорема о определителях произведении матриц?
- 13. Теорема о нахождении обратной матрицы с помощью алгебраической дополнении
- 14. Нахождение обратной матрицы с помощью элементарной преобразовании
- 15. Поле комплексных чисел. Алгебраическая формула комплексных чисел
- Алгебраическая форма
- 18. Нахождения корня комплексного числа в тригонометрической форме?
- Операции над многочленами.
- 21. Деление с остатком в кольце многочленов?
- 22. Алгоритм Евклида в кольце многочленов?
- 23. Нод и нок двух многочленов?
- 24. Корни многочленов. Простые и кратные формы?
- 25. Деление многочленов на двух член! Схема Хорнера?
- 26 Неприводимый многочлен и их свойства
- Определение
- Свойства
- 27 Основная теорема поля комплексных чисел без доказательства и ее следствия
- Некоторые следствия из аксиом поля
- Определение поля комплексных чисел
- 28 Неприводимые многочлены над полем действительных чисел?
- Определение
- Свойства
- Примеры
- Конечные поля
- 29 Неприводимые многочлены над полем рациональных чисел. Критерий Эйзенштейна?
- 30 Векторная пространства. Линейная оболочка векторов?
- 31. Базис и ранг системы векторов?
- 32. Линейная зависимость и линейная независимость систем векторов
- 33. Признаки линейной зависимости векторов
- 34 Необходимые и достаточные условия линейной независимости систем векторов?
- 35 Линейная зависимость двух векторов на прямой
- 36 Линейная зависимость трех векторов на плоскости
- 37 Линейная зависимость четырех векторов в пространстве
- 38 . Базис и размерность над пространством
- 39 Координаты вектора в данном базисе . Координаты точки
- 40 Скалярное произведение векторов свойства
- 2.Свойтсва скалярного произведения векторов.
- 43. Геометрический смысл скалярного, векторного и смешанного произведения.
- Геометрические свойства векторного произведения
- 44.Аффинная система координат. Прямоугольная система координат?
- 45 Радиус Вектора Расстояние между двумя точками
- 46 Уравнение прямой на плоскости
- Уравнение прямой по точке и вектору нормали
- Уравнение прямой, проходящей через две точки
- Уравнение прямой по точке и направляющему вектору
- 47 Нормальный и направляющий вектор на прямой
- 48 Расположение двух прямых Условия параллельности и перпендикулярности прямых
- 49.Угол между двумя прямыми
- 50.Расстояние от точки до прямой