13. Теорема о нахождении обратной матрицы с помощью алгебраической дополнении
Рассмотрим квадратную матрицу
.
Обозначим =det A.
Квадратная матрица А называется невырожденной, или неособенной, если ее определитель отличен от нуля, и вырожденной, или особенной, если = 0.
Квадратная матрица В называется обратной для квадратной матрицы А того же порядка, если их произведение А В = В А = Е, где Е - единичная матрица того же порядка, что и матрицы А и В.
Теорема. Для того, чтобы матрица А имела обратную, необходимо и достаточно, чтобы ее определитель был отличен от нуля.
Матрица, обратная матрице А, обозначается через А1, так что В = А1. Обратная матрица вычисляется по формуле
, (4.5)
где А i j - алгебраические дополнения элементов a i j.
Вычисление обратной матрицы по формуле (4.5) для матриц высокого порядка очень трудоемко, поэтому на практике бывает удобно находить обратную матрицу с помощью метода элементарных преобразований (ЭП). Любую неособенную матрицу А путем ЭП только столбцов (или только строк) можно привести к единичной матрице Е. Если совершенные над матрицей А ЭП в том же порядке применить к единичной матрице Е, то в результате получится обратная матрица. Удобно совершать ЭП над матрицами А и Е одновременно, записывая обе матрицы рядом через черту. Отметим еще раз, что при отыскании канонического вида матрицы с целью нахождения ранга матрицы можно пользоваться преобразованиями строк и столбцов. Если нужно найти обратную матрицу, в процессе преобразований следует использовать только строки или только столбцы.
Пример 2.10. Для матрицы найти обратную.
Решение. Находим сначала детерминант матрицы А
значит, обратная матрица существует и мы ее можем найти по формуле:
,
где Аi j (i,j=1,2,3) - алгебраические дополнения элементов аi j исходной матрицы.
Откуда
.
- Эквивалентность слау при элементарных преобразованиях
- Описание
- Достоинства метода
- Следствия
- Свойства определителей
- 10. Теорема о разложении определителей по строкам, по столбцам:
- Формулировка
- Разложение определителя по строке (столбцу) (Следствие 1)
- Следствие 2 (фальшивое разложение определителя)
- 11. Теорема Крамера
- Описание метода
- Вычислительная сложность
- 12. Теорема о определителях произведении матриц?
- 13. Теорема о нахождении обратной матрицы с помощью алгебраической дополнении
- 14. Нахождение обратной матрицы с помощью элементарной преобразовании
- 15. Поле комплексных чисел. Алгебраическая формула комплексных чисел
- Алгебраическая форма
- 18. Нахождения корня комплексного числа в тригонометрической форме?
- Операции над многочленами.
- 21. Деление с остатком в кольце многочленов?
- 22. Алгоритм Евклида в кольце многочленов?
- 23. Нод и нок двух многочленов?
- 24. Корни многочленов. Простые и кратные формы?
- 25. Деление многочленов на двух член! Схема Хорнера?
- 26 Неприводимый многочлен и их свойства
- Определение
- Свойства
- 27 Основная теорема поля комплексных чисел без доказательства и ее следствия
- Некоторые следствия из аксиом поля
- Определение поля комплексных чисел
- 28 Неприводимые многочлены над полем действительных чисел?
- Определение
- Свойства
- Примеры
- Конечные поля
- 29 Неприводимые многочлены над полем рациональных чисел. Критерий Эйзенштейна?
- 30 Векторная пространства. Линейная оболочка векторов?
- 31. Базис и ранг системы векторов?
- 32. Линейная зависимость и линейная независимость систем векторов
- 33. Признаки линейной зависимости векторов
- 34 Необходимые и достаточные условия линейной независимости систем векторов?
- 35 Линейная зависимость двух векторов на прямой
- 36 Линейная зависимость трех векторов на плоскости
- 37 Линейная зависимость четырех векторов в пространстве
- 38 . Базис и размерность над пространством
- 39 Координаты вектора в данном базисе . Координаты точки
- 40 Скалярное произведение векторов свойства
- 2.Свойтсва скалярного произведения векторов.
- 43. Геометрический смысл скалярного, векторного и смешанного произведения.
- Геометрические свойства векторного произведения
- 44.Аффинная система координат. Прямоугольная система координат?
- 45 Радиус Вектора Расстояние между двумя точками
- 46 Уравнение прямой на плоскости
- Уравнение прямой по точке и вектору нормали
- Уравнение прямой, проходящей через две точки
- Уравнение прямой по точке и направляющему вектору
- 47 Нормальный и направляющий вектор на прямой
- 48 Расположение двух прямых Условия параллельности и перпендикулярности прямых
- 49.Угол между двумя прямыми
- 50.Расстояние от точки до прямой