У р о к 1 (43) Определение квадратного уравнения
Цели: ввести понятия квадратного уравнения, приведенного квадратного уравнения, неполного квадратного уравнения; формировать умения записывать квадратное уравнение в общем виде, различать его коэффициенты.
Ход урока
I. Организационный момент.
II. Устная работа.
1. Является ли число а корнем уравнения:
а) 2х – 7 = 8, а = 7,5;
б) х2 – х – 20 = 0, а = 5;
в) (х3 + 12) (х2 – 8) = 0, а = .
2. Найдите корни уравнения:
а) (х – 3 ) (х + 12) = 0;
б) (6х – 5) (х + 5) = 0;
в) (х – 8) (х + 2) (х2 + 25) = 0.
III. Объяснение нового материала.
Для введения понятия квадратного уравнения используется задача, при решении которой возникает уравнение, еще не известное учащимся. Возникает проблемная ситуация: мы не можем решить практическую задачу, так как пока не умеем решать уравнения нового вида. На этом уроке можно просто указать, какие корни имеет полученное уравнение и сообщить, что такое уравнение называется квадратным.
На доску выносится запись:
Уравнение вида ах2 + bx + c = 0, где a, b, c – числа, а ≠ 0, называется квадратным. |
Далее рассматривается вопрос о коэффициентах квадратного уравнения. Число а называется первым коэффициентом, число b – вторым коэффициентом и число с – свободный член. Особое внимание обращаем, что число а не может быть равным нулю, так как в этом случае уравнение примет вид bх + с = 0, а это линейное уравнение.
Числа b и с, в отличие от а, могут быть и равными нулю. Если хотя бы одно из них равно нулю, то уравнение называется неполным. Можно предложить учащимся самостоятельно выписать виды неполных квадратных уравнений:
b | с | Уравнение |
0 | Х | ах2 + с = 0 |
Х | 0 | ах2 + bх = 0 |
0 | 0 | ах2 = 0 |
Для усвоения понятия квадратного уравнения и его коэффициентов следует предложить учащимся задание:
– Укажите, какие из данных уравнений являются квадратными, объясните ответ:
а) 2х2 + 7х – 3 = 0; д) х2 – 6х + 1 = 0;
б) 5х – 7 = 0; е) 7х2 + 5х = 0;
в) –х2 – 5х – 1 = 0; ж) 4х2 + 1 = 0;
г) + 3х + 4 = 0; з) х2 – = 0.
Затем определяется, какое квадратное уравнение называется приведенным, приводятся примеры.
- У р о к 1 (43) Определение квадратного уравнения
- IV. Формирование умений и навыков.
- V. Итоги урока.
- У р о к 2 (44) Решение неполных квадратных уравнений
- V. Формирование умений и навыков.
- VI. Итоги урока.
- У р о к 3 (45) Решение задач с помощью неполных квадратных уравнений
- IV. Формирование умений и навыков.
- V. Итоги урока.
- IV. Формирование умений и навыков.
- V. Итоги урока.
- У р о к 2 (47) Вывод формулы корней квадратного уравнения
- Ход урока
- I. Организационный момент.
- II. Проверочная работа.
- III. Объяснение нового материала.
- IV. Формирование умений и навыков.
- V. Итоги урока.
- IV. Формирование умений и навыков.
- V. Итоги урока.
- У р о к 4 (49) Решение квадратных уравнений с четным вторым коэффициентом
- IV. Формирование умений и навыков.
- V. Итоги урока.
- VI. Формирование умений и навыков.
- VII. Итоги урока.
- IV. Проверочная работа.
- В а р и а н т 1
- В а р и а н т 2
- В а р и а н т 1
- В а р и а н т 2
- V. Итоги урока.
- IV. Формирование умений и навыков.
- V. Проверочная работа.
- В а р и а н т 1
- В а р и а н т 2
- VI. Итоги урока.
- У р о к 2 (53) Применение теоремы Виета и обратной ей теоремы
- V. Итоги урока.
- В а р и а н т 2
- В а р и а н т 3
- В а р и а н т 4
- У р о к 1 (55) Понятие дробного рационального уравнения
- V. Формирование умений и навыков.
- VI. Итоги урока.
- V. Итоги урока.
- IV. Итоги урока.
- V. Формирование умений и навыков.
- VI. Итоги урока.
- V. Итоги урока.
- IV. Итоги урока.
- В а р и а н т 2
- В а р и а н т 3
- В а р и а н т 4