logo
квадратные уравнения

V. Итоги урока.

В о п р о с ы у ч а щ и м с я:

– На чем основан вывод формулы корней квадратного уравнения?

– Как вычислить дискриминант квадратного уравнения?

– Сколько корней может иметь квадратное уравнение?

– Как определить количество корней квадратного уравнения?

– Если квадратное уравнение имеет единственный корень, то что можно сказать о трёхчлене, стоящем в левой части уравнения?

Домашнее задание: № 535 (б, д, е), № 536 (б, г, е), № 537 (а, в).

У р о к 3 (48) Решение квадратных уравнений по формуле

Цели: продолжить формирование умения решать квадратные уравнения по формуле.

Ход урока

I. Организационный момент.

II. Устная работа.

– Вычислите:

а) ; б); в);

г) ; д); е).

III. Проверочная работа.

– Вычислите дискриминант квадратного уравнения и напишите, сколько корней имеет уравнение:

В а р и а н т 1

а) 5х2 – 4х – 1 = 0;

б) х2 – 6х + 9 = 0;

в) 3хх2 + 10 = 0;

г) 2х + 3 + 2х2 = 0.

В а р и а н т 2

а) 3х2 – 5х + 2 = 0;

б) 4х2 – 4х + 1 = 0;

в) 2хх2 + 3 = 0;

г) 3х + 1 + 6х2 = 0.

О т в е т ы:

В а р и а н т 1

а) D = 36, 2 корня;

б) D = 0, 1 корень;

в) D = 49, 2 корня;

г) D = –20, нет корней.

В а р и а н т 2

а) D = 1, 2 корня;

б) D = 0, 1 корень;

в) D = 16, 2 корня;

г) D = –15, нет корней.