logo
квадратные уравнения

V. Формирование умений и навыков.

Большая часть урока должна быть посвящена анализу условий задач, их схематичной записи, обоснованию выбора переменной и составлению уравнений. Решение самих уравнений можно также предлагать учащимся для самостоятельной работы.

1. № 617.

Р е ш е н и е

А н а л и з: <на.

Пусть х – числитель обыкновенной дроби, тогда (х + 3) – её знаменатель. Увеличив числитель на 7, а знаменатель на 5, мы получили дробь . Зная, что дробь увеличилась на, составим уравнение:

; ОДЗ: х ≠ –3; х ≠ –8.

Общий знаменатель 2(х + 3)(х + 8).

2х(х + 8) = 2(х + 7)(х + 3) – (х + 3)(х + 8);

2х2 + 16х = 2х2 + 20х + 42 – х2 – 11х – 24;

х2 + 7х – 18 = 0.

По теореме, обратной теореме Виета, х1 = 2, х2 = –9. Смыслу задачи удовлетворяет только х = 2, тогда дробь равна .

О т в е т: .

Обращаем внимание учащихся, что уравнение исходное можно было записать и по-другому:

(из большего значения вычитаем меньшее и получаем разницу) или .

2. № 619.

Р е ш е н и е

А н а л и з:

V1=хкм/ч

t1

на 20 мин меньше

20 км

V2= (х+ 2) км/ч

t2

Пусть х км/ч – скорость лыжника, тогда (х + 2) км/ч – скорость второго лыжника. Первый лыжник затратил времени ч, второй –ч. Зная, что второй лыжник затратил на 20 мин, илич, меньше первого, составим уравнение:

; ОДЗ: х ≠ 0, х ≠ –2.

3х(х + 2) – общий знаменатель.

60(х + 2) – 60х = х(х + 2);

60х + 120 – 60хх2 – 2х = 0;

х2 – 2х + 120 = 0;

х2 + 2х – 120 = 0.

По теореме, обратной теореме Виета, х1 = –12, х2 = 10. Корень х = –12 не удовлетворяет условию задачи. Значит, 10 км/ч – скорость второго лыжника.

О т в е т: 10 км/ч; 12 км/ч.

3. № 621.

Р е ш е н и е

А н а л и з:

V, км/ч

t, ч

S, км

По расписанию

х

на 1 ч меньше

720

В действительности

х+ 10

720

Пусть х км/ч – скорость поезда по расписанию, тогда (х + 10) км/ч – действительная скорость поезда. ч – время, которое должен был идти поезд по расписанию, ач – время, затраченное поездом в действительности. Зная, что поезд затратил на 1 ч меньше, чем должен был по расписанию, составим уравнение:

= 1; ОДЗ: х ≠ 0, х ≠ –10.

720(х + 10) – 720х = х(х + 10);

720х + 7200 – 720хх2 – 10х = 0;

х2 + 10х – 7200 = 0.

По теореме, обратной теореме Виета, х1 = –90, х2 = 80. Корень х = –90 не удовлетворяет условию задачи.

О т в е т: 80 км/ч.

4. № 623.

Р е ш е н и е

А н а л и з:

Цена, р.

Кол-во, шт.

Стоимость, р.

«Надежда»

х

на 4 больше

240

«Удача»

х– 5

240

Пусть х р. – цена лотерейного билета «Надежда», тогда (х – 5) р. – цена лотерейного билета «Удача». билетов лотереи «Надежда» купил Андрей, ибилетов лотереи «Удача» мог бы купить Андрей. Зная, что Андрей мог бы купить на 4 билета лотереи «Удача» больше, составим уравнение:

= 4; ОДЗ: х ≠ 5; х ≠ 0.

240х – 240(х – 5) = 4х(х – 5);

60х – 60х + 300 – х2 + 5х = 0;

х2 – 5х – 300 = 0;

D = (–5)2 – 4 · 1 · (–300) = 1225, D > 0, 2 корня.

х1 = = 20;

х2 = = –15 – не удовлетворяет условию задачи.

О т в е т: 20 р.