Задачі, які приводять до поняття похідної. Геометричний та механічний зміст похідної. Означення похідної функції. Основні правила диференціювання
Розглянемо задачу про продуктивність праці. Нехай функція и = и (t) відображає кількість виробленої продукції и за час t і необхідно знайти продуктивність праці в момент t0.
За період часу від t0 до t0 + t кількість виробленої продукції зміниться від значення и0 = u(t0) до значення и0 + и = u(t0 + t); тоді середня продуктивність праці за цей період часу Zcep = и / t. Очевидно, що продуктивність праці в момент t0 можна визначити як граничне значення середньої продуктивності за період часу від t0 до t0 + t при t → 0, тобто:
Z =
Таким чином, продуктивність праці є похідна від обсягу виробленої продукції по часу.
Розглянемо ще одне поняття, яке ілюструє економічний зміст похідної. Витрати виробництва y будемо розглядати як функцію кількості продукції х, що виробляється. Нехай х – приріст продукції, тоді у - приріст витрат виробництва і - середній приріст витрат виробництва продукції на одиницю продукції. Похідна — виражає граничні витрати виробництва і характеризує наближено додаткові затрати на виробництво одиниці додаткової продукції.
Граничні витрати залежать від рівня виробництва (кількість продукції, що випускається) х і визначаються не постійними виробничими затратами, а лише змінними (на сировину, паливо та ін.). Аналогічним чином можуть бути визначені гранична виручка, граничний доход, граничний продукт, гранична користь, гранична продуктивність та інші граничні величини.
Застосування диференціального числення для дослідження економічних об'єктів та процесів на основі аналізу цих граничних величин дістало назву граничного аналізу. Граничні величини характеризують не стан (як сумарна чи середня величина), а процес зміни економічного об’єкта. Таким чином, похідна виступає як швидкість зміни деякого економічного об'єкта (процесу) за часом або відносно іншого об’єкта дослідження. Але необхідно врахувати, що економіка не завжди дозволяє використовувати граничні величини в силу неподільності багатьох об’єктів економічних розрахунків та перервності (дискретності) економічних показників в часі (наприклад, річних, квартальних, місячних та ін.). Водночас у деяких випадках можна відокремитись від дискретності показників і ефективно використовувати граничні величини.
Розглянемо, як приклад, співвідношення між середнім та граничним доходом в умовах монопольного та конкурентного ринків.
Сумарний доход (виручка) від реалізації продукції r можна визначити як добуток ціни одиниці продукції p на кількість продукції q, тобто r = pq.
В умовах монополії одна або декілька фірм повністю контролюють пропозиції певної продукції, а отже і її ціну. При цьому, як правило, зі збільшенням ціни попит на продукцію падає. Вважає, що цей процес проходить по прямій, тобто крива попиту p(q) є лінійна спадаюча функція p=aq+b, де а<0, b>0. Звідси сумарний доход від реалізованої продукції складає r = (aq+b)q = aq2+bq (див. рис. 1). В цьому випадку середній доход на одиницю продукції rcep= r / q = aq+b, а граничний прибуток, тобто додатковий доход від реалізації одиниці додаткової продукції, складатиме r'q= 2aq+b (див. рис. 1). Звідси, в умовах монопольного ринку зі зростанням кількості реалізованої продукції граничний прибуток зменшується, внаслідок чого відбувається зменшення (з меншою швидкістю) середнього прибутку.
В умовах досконалої конкуренції, коли на ринку функціонує велика кількість учасників і кожна фірма не спроможна контролювати рівень цін, стабільна реалізація продукції можлива при домінуючій ринковій ціні, наприклад, р=b. При цьому сумарний прибуток складатиме r=bq і відповідно середній прибуток rсер = r / q = b; граничний прибуток r'q =b (див. рис. 2). Таким чином, в умовах ринку вільної конкуренції, на відміну від монопольного ринку, середній та граничний прибутки збігаються.
Рис. 1 Рис. 2
Для дослідження економічних процесів та вирішення інших прикладних задач використовується поняття еластичності функції.
Означення. Еластичністю функції Ех(у) називається границя відношення відносного приросту функції у до відносного приросту змінної х при x → 0:
(1)
Еластичність функції наближено відображає, на скільки відсотків зміниться функція y=f(x) при зміні незалежної змінної х на 1%.
Визначимо геометричний зміст еластичності функції. За означенням (1) , де tg α - тангенс кута нахилу дотичної в точці М(х;у) (див. рис. 3). Враховуючи, що з трикутника MBN: MN = х tga, MC = у, а з подібності трикутників MBN та АМС: , отримаємо Ех(у) = , тобто еластичність функції (за абсолютною величиною) дорівнює відстаней по дотичній від даної точки графіка до точок її перетину з осями Ох та Оу. Якщо точки перетину дотичної до графіка функції А і В знаходяться по одну сторону від точки М, то еластичність Ех(у) додатня (див. рис. 3), якщо по різні сторони, то Ех(у) від'ємна (див. рис. 4).
Рис. 3 Рис. 4
- Затверджено
- Навчально-методичний посібник
- 5.03050801 „Фінанси і кредит”, 5.03050401 „Економіка підприємства”
- Тема 1.1. Вступ. Множини та операції над ними
- Тема 1.2. Комбінаторика. Біном Ньютона
- 1.1. Вступ. Множини та операції над ними Література
- Питання, що виносяться на самостійну роботу:
- Перехід від алгебраїчної форми запису комплексного числа до тригонометричної, показникової і навпаки
- Розв’язання
- Розв’язання
- Приклади для самостійного розв’язування
- Розв’язування квадратних рівнянь з від’ємним дискримінантом
- Розв’язання
- Розв’язання
- Розв’язання
- Розв’язання
- Розв’язання
- Приклади для самостійного розв’язування
- 1.2. Комбіноторика. Біном Ньютона Література
- Питання, що виносяться на самостійну роботу:
- Основні принципи комбінаторики
- Розв’язування комбінаторних задач
- Тема 2.1. Матриці та визначники
- Тема 2.2. Системи лінійних алгебраїчних рівнянь
- 2.1. Матриці та визначники Література
- Питання, що виносяться на самостійну роботу:
- Розв’язування матричних рівнянь
- Розв’язування матричних рівнянь:
- Розв’язання
- Приклади для самостійного розв’язування
- Знаходження рангу матриць з використанням елементарних перетворень
- Розв’язання
- Розв’язання
- Приклади для самостійного розв’язування
- Тема 3.1. Векторна алгебра
- Тема 3.2. Аналітична геометрія
- 3.1. Векторна алгебра Література
- Питання, що виносяться на самостійну роботу:
- Векторні та скалярні величини. Координати вектора. Дії над векторами в координатній формі. Скалярний добуток і його властивості. Кут між векторами
- Координати вектора
- Дії над векторами в координатній формі
- Розв’язання
- Приклади для самостійного розв’язування
- 3.2. Аналітична геометрія Література
- Питання, що виносяться на самостійну роботу:
- Розв’язування задач на криві другого порядку
- Розв’язання
- Розв’язання
- Розв’язання
- Розв’язання
- Розв’язання
- Розв’язання
- Приклади для самостійного розв’язування
- Тема 4.1. Задачі лінійного програмування
- Розв’язання
- Приклади для самостійного розв’язування
- Тема 5.1. Функціональна залежність. Елементарні функції. Границя функції. Неперервність функції
- 5.1 Функціональна залежність. Елементарні функції. Границя функції. Неперервність функції Література
- Питання, що виносяться на самостійну роботу:
- Означення функціональної залежності. Функції в економіці. Способи задання функцій
- Розв’язання
- Способи задання функції:
- За означенням, для взаємно обернених функцій маємо:
- Приклади для самостійного розв’язування
- Дослідження основних властивостей функції: області визначення, парності, непарності функції, періодичності за аналітичним заданням функції
- Розв’язання
- Елементарні функції
- Приклади для самостійного розв’язування
- Тема 6.1. Похідна функції та диференціал
- Тема 6.2. Застосування диференціального числення до дослідження функцій та побудови їх графіків
- 6.1. Похідна функції та диференціал Література
- Питання, що виносяться на самостійну роботу:
- Задачі, які приводять до поняття похідної. Геометричний та механічний зміст похідної. Означення похідної функції. Основні правила диференціювання
- Властивості еластичності функції:
- Розв’язання
- Розв’язання
- Розв’язання
- Означення похідної функції
- Механічний зміст похідної:
- Основні правила диференціювання
- Доведення
- Похідні функцій заданих неявно та параметрично
- Розв’язання
- Розв’язання
- Розв’язання
- Розв’язання
- Приклади для самостійного розв’язування
- Диференціал, його геометричний зміст. Застосування диференціала до наближених обчислень.
- Диференціали вищих порядків
- Питання, що виносяться на самостійну роботу:
- Зростання, спадання та екстремуми функцій, необхідні та достатні умови. Асимптоти до графіка функцій Зростання та спадання функції
- Розв’язання
- Доведення
- Екстремуми функції
- Проте виявляється, що цього недостатньо, бо може , а функція в цій точці екстремуму не має.
- Якщо в критичній точці, то нічого конкретного сказати не можна, бо в цій точці може бути екстремум, а може й не бути.
- Розв’язання
- Розв’язання
- Розв’язання
- Розв’язання
- Розв’язання
- Розв’язання
- Асимптоти до графіка функцій
- Розв’язання
- Приклади для самостійного розв’язування
- Дослідження функцій за допомогою похідної
- Розв’язання
- Розв’язання
- Розв’язання
- Приклади для самостійного розв’язування
- Тема 7.1. Функції багатьох змінних. Екстремуми функцій багатьох змінних
- 7.1. Функції багатьох змінних. Екстремуми функцій багатьох змінних Література
- Питання, що виносяться на самостійну роботу:
- Границя та неперервність функцій кількох змінних
- Розв’язання
- Доведення
- Неперервність функцій двох змінних
- Неперервність складеної (складної) функції двох змінних
- Приклади для самостійного розв’язування
- Найбільше та найменше значення функції в замкненій області
- Розв’язання
- Розв’язання
- Приклади для самостійного розв’язування
- Застосування диференціального числення функцій багатьох змінних до наближених обчислень
- Розв’язання
- Розв’язання
- Розв’язання
- Приклади для самостійного розв’язування
- Тема 8.1. Невизначений інтеграл
- Тема 8.2. Визначений інтеграл та його застосування
- Тема 8.3. Диференціальні рівняння першого порядку
- 8.1. Невизначений інтеграл Література
- Питання, що виносяться на самостійну роботу:
- Первісна функція. Невизначений інтеграл і його властивості. Таблиця невизначених інтегралів
- І. Похідна від невизначеного інтеграла дорівнює підінтегральній функції
- Метод інтегрування частинами
- Приклади для самостійного розв’язування
- 8.2. Визначений інтеграл та його застосування Література
- Питання, що виносяться на самостійну роботу:
- Визначений інтеграл та його основні властивості
- Приклади для самостійного розв’язування
- Обчислення довжини дуги плоскої фігури, об’єму тіла обертання Площа фігури
- Розв’язання
- Область задана в полярних координатах
- Об’єм тіла, отриманого при обертанні кривої навколо координатної вісі
- Розв’язання
- Питання, що виносяться на самостійну роботу:
- Розв’язування вправ на диференціальні рівняння першого порядку
- Розв’язання
- Рівняння з відокремлювальними змінними
- Розв’язання
- Розв’язання
- Розв’язання
- Лінійні рівняння
- Розв’язання
- Розв’язання
- Однорідні рівняння
- Розв’язання
- Розв’язання
- Приклади для самостійного розв’язування
- Тема 9.1. Числові ряди, їх збіжність.
- Тема 9.2. Степеневі ряди.
- 9.1. Числові ряди, їх збіжність Література
- Питання, що виносяться на самостійну роботу:
- Ряд геометричної прогресії, його збіжність
- Розв’язання
- Радикальна ознака Коші. Використання ознак збіжності рядів з додатними членами
- Візьмемо другий додатний числовий ряд, збіжність чи розбіжність якого відома
- Розв’язання
- Розв’язання
- Розв’язання
- Розв’язання
- Приклади для самостійного розв’язування
- Знакопочергові ряди. Ознака Лейбніца
- Розв’язання
- Приклади для самостійного розв’язування
- 9.2. Степеневі ряди Література
- Питання, що виносяться на самостійну роботу:
- Ряди Тейлора та Маклорена. Розклад елементарних функцій в ряд Маклорена.
- Приклади для самостійного розв’язування