Первісна функція. Невизначений інтеграл і його властивості. Таблиця невизначених інтегралів
Означення. Функція F(x) називається первісною для функції f(x) на проміжку І, якщо на цьому проміжку F'(x) = f(x) або dF(x) = f(x)dx .
Із означення виходить, що первісна F(x) — диференційована, а значить неперервна функція на проміжку І, і її вигляд суттєво залежить від проміжку, на якому вона розглядається.
Приклад. Первісні для функції мають вигляд:
причому, F1(x), F2(x) — неперервні R, a F3(x) у точці х = 0 має розрив (рис. 1). У цьому прикладі первісні Fi(x) і = 1,2,3, знайдені методом добору із наступною перевіркою, використовуючи таблицю похідних функцій.
Теорема (про множину первісних). Якщо F(x) — первісна для функції f(х) на проміжку I, то:
1) F(x) + C — також первісна для f(x) на проміжку I;
2) будь-яка первісна Ф(х) для f(x) може бути представлена у вигляді Ф(х) = F(x) + С на проміжку I. (Тут С = const називається довільною сталою).
Наслідок. Дві будь-які первісні для однієї й тієї самої функції на проміжку I відрізняються між собою на сталу величину (рис. 1).
Означення. Операція знаходження первісних для функції f(x) називається інтегруванням f(x).
Задача інтегрування функції на проміжку полягає у тому, щоб знайти всі первісні функції на цьому проміжку, або довести, що функція немає первісних на цьому проміжку.
Для розв'язання задачі інтегрування функції достатньо знайти одну будь-яку первісну на розглядуваному проміжку, наприклад F(x), тоді (за теоремою про множину первісних) F(x) + С — загальний вигляд всієї множини первісних на цьому проміжку.
Означення. Функція F(x) + С, що являє собою загальний вигляд всієї множини первісних для функції f(х) на проміжку I, називається невизначеним інтегралом від функції f(x) на проміжку I і позначається
(1)
де — знак невизначеного інтеграла;
f(x) — підінтегральна функція;
f(x)dx — підінтегральний вираз;
dx — диференціал змінної інтегрування.
Г еометричний зміст невизначеного інтеграла полягає у тому, що функція у= F(X) + С є рівняння однопараметричної сім'ї кривих, які одержуються одна з другої шляхом паралельного переносу вздовж осі ординат (рис. 2).
Рис.2
Теорема (Коші). Для існування невизначеного інтеграла для функції f(x) на певному проміжку достатньо, щоб f(x) була неперервною на цьому проміжку.
Зауваження. Виявляється є такі невизначені інтеграли від елементарних функцій, які через елементарні функції не виражаються, наприклад:
існують у кожному із проміжків області визначення, але записати їх через основні елементарні функції не можна; в такому розумінні ці інтеграли називають «неінтегрованими».
a) Властивості, що випливають із означення невизначеного інтеграла:
- Затверджено
- Навчально-методичний посібник
- 5.03050801 „Фінанси і кредит”, 5.03050401 „Економіка підприємства”
- Тема 1.1. Вступ. Множини та операції над ними
- Тема 1.2. Комбінаторика. Біном Ньютона
- 1.1. Вступ. Множини та операції над ними Література
- Питання, що виносяться на самостійну роботу:
- Перехід від алгебраїчної форми запису комплексного числа до тригонометричної, показникової і навпаки
- Розв’язання
- Розв’язання
- Приклади для самостійного розв’язування
- Розв’язування квадратних рівнянь з від’ємним дискримінантом
- Розв’язання
- Розв’язання
- Розв’язання
- Розв’язання
- Розв’язання
- Приклади для самостійного розв’язування
- 1.2. Комбіноторика. Біном Ньютона Література
- Питання, що виносяться на самостійну роботу:
- Основні принципи комбінаторики
- Розв’язування комбінаторних задач
- Тема 2.1. Матриці та визначники
- Тема 2.2. Системи лінійних алгебраїчних рівнянь
- 2.1. Матриці та визначники Література
- Питання, що виносяться на самостійну роботу:
- Розв’язування матричних рівнянь
- Розв’язування матричних рівнянь:
- Розв’язання
- Приклади для самостійного розв’язування
- Знаходження рангу матриць з використанням елементарних перетворень
- Розв’язання
- Розв’язання
- Приклади для самостійного розв’язування
- Тема 3.1. Векторна алгебра
- Тема 3.2. Аналітична геометрія
- 3.1. Векторна алгебра Література
- Питання, що виносяться на самостійну роботу:
- Векторні та скалярні величини. Координати вектора. Дії над векторами в координатній формі. Скалярний добуток і його властивості. Кут між векторами
- Координати вектора
- Дії над векторами в координатній формі
- Розв’язання
- Приклади для самостійного розв’язування
- 3.2. Аналітична геометрія Література
- Питання, що виносяться на самостійну роботу:
- Розв’язування задач на криві другого порядку
- Розв’язання
- Розв’язання
- Розв’язання
- Розв’язання
- Розв’язання
- Розв’язання
- Приклади для самостійного розв’язування
- Тема 4.1. Задачі лінійного програмування
- Розв’язання
- Приклади для самостійного розв’язування
- Тема 5.1. Функціональна залежність. Елементарні функції. Границя функції. Неперервність функції
- 5.1 Функціональна залежність. Елементарні функції. Границя функції. Неперервність функції Література
- Питання, що виносяться на самостійну роботу:
- Означення функціональної залежності. Функції в економіці. Способи задання функцій
- Розв’язання
- Способи задання функції:
- За означенням, для взаємно обернених функцій маємо:
- Приклади для самостійного розв’язування
- Дослідження основних властивостей функції: області визначення, парності, непарності функції, періодичності за аналітичним заданням функції
- Розв’язання
- Елементарні функції
- Приклади для самостійного розв’язування
- Тема 6.1. Похідна функції та диференціал
- Тема 6.2. Застосування диференціального числення до дослідження функцій та побудови їх графіків
- 6.1. Похідна функції та диференціал Література
- Питання, що виносяться на самостійну роботу:
- Задачі, які приводять до поняття похідної. Геометричний та механічний зміст похідної. Означення похідної функції. Основні правила диференціювання
- Властивості еластичності функції:
- Розв’язання
- Розв’язання
- Розв’язання
- Означення похідної функції
- Механічний зміст похідної:
- Основні правила диференціювання
- Доведення
- Похідні функцій заданих неявно та параметрично
- Розв’язання
- Розв’язання
- Розв’язання
- Розв’язання
- Приклади для самостійного розв’язування
- Диференціал, його геометричний зміст. Застосування диференціала до наближених обчислень.
- Диференціали вищих порядків
- Питання, що виносяться на самостійну роботу:
- Зростання, спадання та екстремуми функцій, необхідні та достатні умови. Асимптоти до графіка функцій Зростання та спадання функції
- Розв’язання
- Доведення
- Екстремуми функції
- Проте виявляється, що цього недостатньо, бо може , а функція в цій точці екстремуму не має.
- Якщо в критичній точці, то нічого конкретного сказати не можна, бо в цій точці може бути екстремум, а може й не бути.
- Розв’язання
- Розв’язання
- Розв’язання
- Розв’язання
- Розв’язання
- Розв’язання
- Асимптоти до графіка функцій
- Розв’язання
- Приклади для самостійного розв’язування
- Дослідження функцій за допомогою похідної
- Розв’язання
- Розв’язання
- Розв’язання
- Приклади для самостійного розв’язування
- Тема 7.1. Функції багатьох змінних. Екстремуми функцій багатьох змінних
- 7.1. Функції багатьох змінних. Екстремуми функцій багатьох змінних Література
- Питання, що виносяться на самостійну роботу:
- Границя та неперервність функцій кількох змінних
- Розв’язання
- Доведення
- Неперервність функцій двох змінних
- Неперервність складеної (складної) функції двох змінних
- Приклади для самостійного розв’язування
- Найбільше та найменше значення функції в замкненій області
- Розв’язання
- Розв’язання
- Приклади для самостійного розв’язування
- Застосування диференціального числення функцій багатьох змінних до наближених обчислень
- Розв’язання
- Розв’язання
- Розв’язання
- Приклади для самостійного розв’язування
- Тема 8.1. Невизначений інтеграл
- Тема 8.2. Визначений інтеграл та його застосування
- Тема 8.3. Диференціальні рівняння першого порядку
- 8.1. Невизначений інтеграл Література
- Питання, що виносяться на самостійну роботу:
- Первісна функція. Невизначений інтеграл і його властивості. Таблиця невизначених інтегралів
- І. Похідна від невизначеного інтеграла дорівнює підінтегральній функції
- Метод інтегрування частинами
- Приклади для самостійного розв’язування
- 8.2. Визначений інтеграл та його застосування Література
- Питання, що виносяться на самостійну роботу:
- Визначений інтеграл та його основні властивості
- Приклади для самостійного розв’язування
- Обчислення довжини дуги плоскої фігури, об’єму тіла обертання Площа фігури
- Розв’язання
- Область задана в полярних координатах
- Об’єм тіла, отриманого при обертанні кривої навколо координатної вісі
- Розв’язання
- Питання, що виносяться на самостійну роботу:
- Розв’язування вправ на диференціальні рівняння першого порядку
- Розв’язання
- Рівняння з відокремлювальними змінними
- Розв’язання
- Розв’язання
- Розв’язання
- Лінійні рівняння
- Розв’язання
- Розв’язання
- Однорідні рівняння
- Розв’язання
- Розв’язання
- Приклади для самостійного розв’язування
- Тема 9.1. Числові ряди, їх збіжність.
- Тема 9.2. Степеневі ряди.
- 9.1. Числові ряди, їх збіжність Література
- Питання, що виносяться на самостійну роботу:
- Ряд геометричної прогресії, його збіжність
- Розв’язання
- Радикальна ознака Коші. Використання ознак збіжності рядів з додатними членами
- Візьмемо другий додатний числовий ряд, збіжність чи розбіжність якого відома
- Розв’язання
- Розв’язання
- Розв’язання
- Розв’язання
- Приклади для самостійного розв’язування
- Знакопочергові ряди. Ознака Лейбніца
- Розв’язання
- Приклади для самостійного розв’язування
- 9.2. Степеневі ряди Література
- Питання, що виносяться на самостійну роботу:
- Ряди Тейлора та Маклорена. Розклад елементарних функцій в ряд Маклорена.
- Приклади для самостійного розв’язування