Основні принципи комбінаторики
Двома основними правилами комбінаторики є:
Принцип суми. Якщо множина A містить m елементів, а множина B – n елементів, і ці множини не перетинаються, то AB містить m+n елементів.
Принцип добутку. Якщо множина A містить m елементів, а множина B – n елементів, то AB містить mn елементів, тобто пар.
Кількість елементів множини A будемо далі позначати |A|.
Ці правила мають також вигляд:
Принцип суми. Якщо об'єкт A можна вибрати m способами, а об'єкт B – n іншими способами, то вибір "або A, або B" можна здійснити m+n способами.
Принцип добутку. Якщо об'єкт A можна вибрати m способами і після кожного такого вибору об'єкт B може бути вибраним n способами, то вибір "A і B" в указаному порядку можна здійснити mn способами.
Наведені правила очевидним чином узагальнюються на випадки довільних скінченних об'єднань множин, що попарно не перетинаються, та на скінченні декартові добутки.
Правило добутку застосовується для підрахунку кількості об'єктів, що розглядаються як елементи декартових добутків відповідних множин. Отже, ці об'єкти являють собою скінченні послідовності – пари, трійки тощо.
Нагадаємо, що з точки зору математики послідовність довжини m елементів множини A – це функція, яка натуральним числам 1, 2, …, m ставить у відповідність елементи з A.
Означення. Розміщення з повтореннями по m елементів n-елементної множини A – це послідовність елементів множини A, що має довжину m.
Приклад. При A={a, b, c} розміщення з повтореннями по два елементи – це пари (a,a), (a,b), (a,c), (b,a), (b,b), (b,c), (c,a), (c,b), (c,c).
Якщо |A|=n, то за правилом добутку множина всіх розміщень з повтореннями, тобто множина Am=AA…A, містить nm елементів. Зокрема, якщо |A|=2, то розміщень з повтореннями 2m. Зауважимо, що ці розміщення можна взаємно однозначно поставити у відповідність послідовностям з 0 і 1 довжини m.
У багатьох комбінаторних задачах об'єкти, кількість яких треба обчислити, являють собою послідовності, у яких перший елемент належить множині A1, другий – A2, тощо. Але досить часто множина A2 визначається лише після того, як зафіксовано перший член послідовності, A3 – після того, як зафіксовано перші два і т.д. Обчислимо, наприклад, кількість 7-цифрових телефонних номерів, у яких немає двох однакових цифр поспіль. Якщо на першому місці в номері є, наприклад, 1, то на другому може бути будь-яка з 9 інших цифр. І так само на подальших сусідніх місцях. Таким чином, тут |A1|=10, |A2|=|A3|=…=|A7|=9, і загальна кількість номерів є 1096.
Означення. Розміщення по m елементів n-елементної множини A, де mn – це послідовність елементів множини A, що має довжину m і попарно різні члени.
Приклади.
1. При A={a, b, c} розміщення по два елементи – це пари (a,b), (a,c), (b,a), (b,c), (c,a), (c,b).
2. Розподіл n різних кульок по одній на кожний з m різних ящиків, mn. Ящики можна пронумерувати від 1 до m, кульки – від 1 до n. Тоді кожному розподілу взаємно однозначно відповідає послідовність довжини m попарно різних номерів від 1 до n.
Неважко підрахувати кількість послідовностей з прикладу 2. На першому місці може стояти будь-який із номерів 1, …, n. На другому – незалежно від того, який саме був на першому, будь-який із n-1, що залишилися. І так далі. За принципом добутку, таких послідовностей n(n-1)…(n-m+1), або n!/(n-m)!. Цей добуток позначається або (n)m або nm.
Означення. Перестановка n елементів множини A без повторень – це розміщення по n елементів, тобто послідовність елементів множини A, що має довжину n і попарно різні члени.
Приклад. При A={a, b, c} усі перестановки –це трійки (a,b,c), (a,c,b), (b,a,c), (b,c,a), (c,a,b), (c,b,a).
Очевидно, що кількість перестановок n елементів дорівнює кількості розміщень по m при m=n, тобто n!. Отже, nn=n!.
Означення. Комбінація по m елементів n-елементної множини – це її m-елементна підмножина.
Приклади.
1. При A={a, b, c} усі комбінації по два елементи – це підмножини {a,b}, {a,c}, {b,c}.
2. Розподіл n різних кульок по одній на кожний з m однакових ящиків, mn. Оскільки ящики однакові, то розподіл взаємно однозначно визначається підмножиною з m кульок, що розкладаються.
З кожної m-елементної комбінації елементів n-елементної множини можна утворити m! перестановок елементів цієї підмножини. Їх можна розглядати як розміщення по m елементів. Таким чином, кожні m! розміщень із тим самим складом, але різним порядком елементів відповідають одній комбінації. Звідси очевидно, що кількість комбінацій є = . Ця кількість позначається або .
Означення. Перестановка з повтореннями по m елементів множини A ={a1, a2, …, an} складу (k1, k2, …, kn) – це послідовність довжини m=k1+k2+…+kn, в якій елементи a1, a2, …, an повторюються відповідно k1, k2, …, kn разів.
Приклади.
1. При A={a, b, c} перестановками з повтореннями складу (1, 0, 2) є послідовності (a,c,c), (c,a,c), (c,c,a), складу (1, 1, 1) – (a,b,c), (a,c,b), (b,a,c), (b,c,a), (c,a,b), (c,b,a).
2. Нехай m різних кульок розкладаються по n різних ящиках так, що в першому ящику k1 кульок, у другому – k2 кульок, …, у n-му – kn кульок, причому m=k1+k2+…+kn. Пронумеруємо кульки від 1 до m, ящики – від 1 до n. Задамо розподілення кульок як функцію, яка ставить у відповідність номеру кульки номер ящика, куди вона потрапила. Отже, маємо послідовність довжини m=k1+k2+…+kn, в якій номери 1, 2, …, n повторюються k1, k2, …, kn разів відповідно. Очевидно, що така функція відповідає розкладу кульок взаємно однозначно. Таким чином, розклад подається як перестановка з повтореннями складу (k1, k2, …, kn).
Кількість перестановок з повтореннями з елементів множини A={a1, a2, …, an} складу (k1, k2, …, kn) позначається P(k1, k2, …, kn) і виражається формулою:
P(k1, k2, …, kn)= .
Означення. Біном Ньютона – це вираз вигляду (a+b)n.
Біном розкладається в суму одночленів, які є добутками деяких степенів його доданків a і b. Школярі-восьмикласники знають формули розкладу бінома Ньютона в многочлен із степенями a і b при n=2 та 3:
(a+b)2=a2+2ab+b2,
(a+b)3=a3+3a2b+3ab2+b3.
Спробуємо розкласти (a+b)n в многочлен у загальному випадку n. Запишемо його у вигляді, пронумерувавши дужки:
1 2 … n
(a+b)(a+b)…(a+b).
Очевидно, що кожний доданок містить n множників – k множників a і n-k множників b, тобто має вигляд akbn-k, де kn, k0. Кожний такий доданок взаємно однозначно відповідає підмножині номерів дужок, з яких для утворення цього доданка ми брали множники a. Таким чином, доданків akbn-k рівно стільки, скільки таких підмножин, тобто = . Отже,
(a+b)n =
Коефіцієнти при akbn-k називаються біноміальними, оскільки записуються в розкладі бінома (a+b)n.
Біноміальні коефіцієнти мають очевидну властивість симетрії:
= =. .
Розглянемо окремі випадки бінома Ньютона:
при b=1 маємо (a+1)n = ,
при a=b=1 маємо (1+1)n = 2n = ,
при a= –1, b=1 маємо (–1+1)n = 0n = (–1)k.
За останньою рівністю, зокрема, природно означити 00 як 1.
Запишемо біноміальні коефіцієнти для початкових значень n=0, 1, …, 5 у трикутну таблицю:
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
З таблиці видно, що кожний елемент, який не є першим у своєму рядку, є сумою елемента над ним і елемента, розташованого над ним і ліворуч:
= +
Ця тотожність називається правилом додавання.
Таблиця біноміальних коефіцієнтів зображається ще у вигляді так званого арифметичного трикутника, або трикутника Паскаля:
1
1 1
1 2 1
1 3 3 1
………….…
- Затверджено
- Навчально-методичний посібник
- 5.03050801 „Фінанси і кредит”, 5.03050401 „Економіка підприємства”
- Тема 1.1. Вступ. Множини та операції над ними
- Тема 1.2. Комбінаторика. Біном Ньютона
- 1.1. Вступ. Множини та операції над ними Література
- Питання, що виносяться на самостійну роботу:
- Перехід від алгебраїчної форми запису комплексного числа до тригонометричної, показникової і навпаки
- Розв’язання
- Розв’язання
- Приклади для самостійного розв’язування
- Розв’язування квадратних рівнянь з від’ємним дискримінантом
- Розв’язання
- Розв’язання
- Розв’язання
- Розв’язання
- Розв’язання
- Приклади для самостійного розв’язування
- 1.2. Комбіноторика. Біном Ньютона Література
- Питання, що виносяться на самостійну роботу:
- Основні принципи комбінаторики
- Розв’язування комбінаторних задач
- Тема 2.1. Матриці та визначники
- Тема 2.2. Системи лінійних алгебраїчних рівнянь
- 2.1. Матриці та визначники Література
- Питання, що виносяться на самостійну роботу:
- Розв’язування матричних рівнянь
- Розв’язування матричних рівнянь:
- Розв’язання
- Приклади для самостійного розв’язування
- Знаходження рангу матриць з використанням елементарних перетворень
- Розв’язання
- Розв’язання
- Приклади для самостійного розв’язування
- Тема 3.1. Векторна алгебра
- Тема 3.2. Аналітична геометрія
- 3.1. Векторна алгебра Література
- Питання, що виносяться на самостійну роботу:
- Векторні та скалярні величини. Координати вектора. Дії над векторами в координатній формі. Скалярний добуток і його властивості. Кут між векторами
- Координати вектора
- Дії над векторами в координатній формі
- Розв’язання
- Приклади для самостійного розв’язування
- 3.2. Аналітична геометрія Література
- Питання, що виносяться на самостійну роботу:
- Розв’язування задач на криві другого порядку
- Розв’язання
- Розв’язання
- Розв’язання
- Розв’язання
- Розв’язання
- Розв’язання
- Приклади для самостійного розв’язування
- Тема 4.1. Задачі лінійного програмування
- Розв’язання
- Приклади для самостійного розв’язування
- Тема 5.1. Функціональна залежність. Елементарні функції. Границя функції. Неперервність функції
- 5.1 Функціональна залежність. Елементарні функції. Границя функції. Неперервність функції Література
- Питання, що виносяться на самостійну роботу:
- Означення функціональної залежності. Функції в економіці. Способи задання функцій
- Розв’язання
- Способи задання функції:
- За означенням, для взаємно обернених функцій маємо:
- Приклади для самостійного розв’язування
- Дослідження основних властивостей функції: області визначення, парності, непарності функції, періодичності за аналітичним заданням функції
- Розв’язання
- Елементарні функції
- Приклади для самостійного розв’язування
- Тема 6.1. Похідна функції та диференціал
- Тема 6.2. Застосування диференціального числення до дослідження функцій та побудови їх графіків
- 6.1. Похідна функції та диференціал Література
- Питання, що виносяться на самостійну роботу:
- Задачі, які приводять до поняття похідної. Геометричний та механічний зміст похідної. Означення похідної функції. Основні правила диференціювання
- Властивості еластичності функції:
- Розв’язання
- Розв’язання
- Розв’язання
- Означення похідної функції
- Механічний зміст похідної:
- Основні правила диференціювання
- Доведення
- Похідні функцій заданих неявно та параметрично
- Розв’язання
- Розв’язання
- Розв’язання
- Розв’язання
- Приклади для самостійного розв’язування
- Диференціал, його геометричний зміст. Застосування диференціала до наближених обчислень.
- Диференціали вищих порядків
- Питання, що виносяться на самостійну роботу:
- Зростання, спадання та екстремуми функцій, необхідні та достатні умови. Асимптоти до графіка функцій Зростання та спадання функції
- Розв’язання
- Доведення
- Екстремуми функції
- Проте виявляється, що цього недостатньо, бо може , а функція в цій точці екстремуму не має.
- Якщо в критичній точці, то нічого конкретного сказати не можна, бо в цій точці може бути екстремум, а може й не бути.
- Розв’язання
- Розв’язання
- Розв’язання
- Розв’язання
- Розв’язання
- Розв’язання
- Асимптоти до графіка функцій
- Розв’язання
- Приклади для самостійного розв’язування
- Дослідження функцій за допомогою похідної
- Розв’язання
- Розв’язання
- Розв’язання
- Приклади для самостійного розв’язування
- Тема 7.1. Функції багатьох змінних. Екстремуми функцій багатьох змінних
- 7.1. Функції багатьох змінних. Екстремуми функцій багатьох змінних Література
- Питання, що виносяться на самостійну роботу:
- Границя та неперервність функцій кількох змінних
- Розв’язання
- Доведення
- Неперервність функцій двох змінних
- Неперервність складеної (складної) функції двох змінних
- Приклади для самостійного розв’язування
- Найбільше та найменше значення функції в замкненій області
- Розв’язання
- Розв’язання
- Приклади для самостійного розв’язування
- Застосування диференціального числення функцій багатьох змінних до наближених обчислень
- Розв’язання
- Розв’язання
- Розв’язання
- Приклади для самостійного розв’язування
- Тема 8.1. Невизначений інтеграл
- Тема 8.2. Визначений інтеграл та його застосування
- Тема 8.3. Диференціальні рівняння першого порядку
- 8.1. Невизначений інтеграл Література
- Питання, що виносяться на самостійну роботу:
- Первісна функція. Невизначений інтеграл і його властивості. Таблиця невизначених інтегралів
- І. Похідна від невизначеного інтеграла дорівнює підінтегральній функції
- Метод інтегрування частинами
- Приклади для самостійного розв’язування
- 8.2. Визначений інтеграл та його застосування Література
- Питання, що виносяться на самостійну роботу:
- Визначений інтеграл та його основні властивості
- Приклади для самостійного розв’язування
- Обчислення довжини дуги плоскої фігури, об’єму тіла обертання Площа фігури
- Розв’язання
- Область задана в полярних координатах
- Об’єм тіла, отриманого при обертанні кривої навколо координатної вісі
- Розв’язання
- Питання, що виносяться на самостійну роботу:
- Розв’язування вправ на диференціальні рівняння першого порядку
- Розв’язання
- Рівняння з відокремлювальними змінними
- Розв’язання
- Розв’язання
- Розв’язання
- Лінійні рівняння
- Розв’язання
- Розв’язання
- Однорідні рівняння
- Розв’язання
- Розв’язання
- Приклади для самостійного розв’язування
- Тема 9.1. Числові ряди, їх збіжність.
- Тема 9.2. Степеневі ряди.
- 9.1. Числові ряди, їх збіжність Література
- Питання, що виносяться на самостійну роботу:
- Ряд геометричної прогресії, його збіжність
- Розв’язання
- Радикальна ознака Коші. Використання ознак збіжності рядів з додатними членами
- Візьмемо другий додатний числовий ряд, збіжність чи розбіжність якого відома
- Розв’язання
- Розв’язання
- Розв’язання
- Розв’язання
- Приклади для самостійного розв’язування
- Знакопочергові ряди. Ознака Лейбніца
- Розв’язання
- Приклади для самостійного розв’язування
- 9.2. Степеневі ряди Література
- Питання, що виносяться на самостійну роботу:
- Ряди Тейлора та Маклорена. Розклад елементарних функцій в ряд Маклорена.
- Приклади для самостійного розв’язування