V. Формирование умений и навыков.
Большая часть урока должна быть посвящена анализу условий задач, их схематичной записи, обоснованию выбора переменной и составлению уравнений. Решение самих уравнений можно также предлагать учащимся для самостоятельной работы.
1. № 617.
Р е ш е н и е
А н а л и з: <на.
Пусть х – числитель обыкновенной дроби, тогда (х + 3) – её знаменатель. Увеличив числитель на 7, а знаменатель на 5, мы получили дробь . Зная, что дробь увеличилась на, составим уравнение:
; ОДЗ: х ≠ –3; х ≠ –8.
Общий знаменатель 2(х + 3)(х + 8).
2х(х + 8) = 2(х + 7)(х + 3) – (х + 3)(х + 8);
2х2 + 16х = 2х2 + 20х + 42 – х2 – 11х – 24;
х2 + 7х – 18 = 0.
По теореме, обратной теореме Виета, х1 = 2, х2 = –9. Смыслу задачи удовлетворяет только х = 2, тогда дробь равна .
О т в е т: .
Обращаем внимание учащихся, что уравнение исходное можно было записать и по-другому:
(из большего значения вычитаем меньшее и получаем разницу) или .
2. № 619.
Р е ш е н и е
А н а л и з:
V1=хкм/ч | t1=ч | на 20 мин меньше | |
20 км |
| ||
V2= (х+ 2) км/ч | t2=ч |
Пусть х км/ч – скорость лыжника, тогда (х + 2) км/ч – скорость второго лыжника. Первый лыжник затратил времени ч, второй –ч. Зная, что второй лыжник затратил на 20 мин, илич, меньше первого, составим уравнение:
; ОДЗ: х ≠ 0, х ≠ –2.
3х(х + 2) – общий знаменатель.
60(х + 2) – 60х = х(х + 2);
60х + 120 – 60х – х2 – 2х = 0;
–х2 – 2х + 120 = 0;
х2 + 2х – 120 = 0.
По теореме, обратной теореме Виета, х1 = –12, х2 = 10. Корень х = –12 не удовлетворяет условию задачи. Значит, 10 км/ч – скорость второго лыжника.
О т в е т: 10 км/ч; 12 км/ч.
3. № 621.
Р е ш е н и е
А н а л и з:
| V, км/ч | t, ч | S, км | ||
По расписанию | х | на 1 ч меньше | 720 | ||
В действительности | х+ 10 | 720 |
Пусть х км/ч – скорость поезда по расписанию, тогда (х + 10) км/ч – действительная скорость поезда. ч – время, которое должен был идти поезд по расписанию, ач – время, затраченное поездом в действительности. Зная, что поезд затратил на 1 ч меньше, чем должен был по расписанию, составим уравнение:
= 1; ОДЗ: х ≠ 0, х ≠ –10.
720(х + 10) – 720х = х(х + 10);
720х + 7200 – 720х – х2 – 10х = 0;
х2 + 10х – 7200 = 0.
По теореме, обратной теореме Виета, х1 = –90, х2 = 80. Корень х = –90 не удовлетворяет условию задачи.
О т в е т: 80 км/ч.
4. № 623.
Р е ш е н и е
А н а л и з:
| Цена, р. | Кол-во, шт. | Стоимость, р. | ||
«Надежда» | х | на 4 больше | 240 | ||
«Удача» | х– 5 | 240 |
Пусть х р. – цена лотерейного билета «Надежда», тогда (х – 5) р. – цена лотерейного билета «Удача». билетов лотереи «Надежда» купил Андрей, ибилетов лотереи «Удача» мог бы купить Андрей. Зная, что Андрей мог бы купить на 4 билета лотереи «Удача» больше, составим уравнение:
= 4; ОДЗ: х ≠ 5; х ≠ 0.
240х – 240(х – 5) = 4х(х – 5);
60х – 60х + 300 – х2 + 5х = 0;
х2 – 5х – 300 = 0;
D = (–5)2 – 4 · 1 · (–300) = 1225, D > 0, 2 корня.
х1 = = 20;
х2 = = –15 – не удовлетворяет условию задачи.
О т в е т: 20 р.
- У р о к 1 (43) Определение квадратного уравнения
- IV. Формирование умений и навыков.
- V. Итоги урока.
- У р о к 2 (44) Решение неполных квадратных уравнений
- V. Формирование умений и навыков.
- VI. Итоги урока.
- У р о к 3 (45) Решение задач с помощью неполных квадратных уравнений
- IV. Формирование умений и навыков.
- V. Итоги урока.
- IV. Формирование умений и навыков.
- V. Итоги урока.
- У р о к 2 (47) Вывод формулы корней квадратного уравнения
- Ход урока
- I. Организационный момент.
- II. Проверочная работа.
- III. Объяснение нового материала.
- IV. Формирование умений и навыков.
- V. Итоги урока.
- IV. Формирование умений и навыков.
- V. Итоги урока.
- У р о к 4 (49) Решение квадратных уравнений с четным вторым коэффициентом
- IV. Формирование умений и навыков.
- V. Итоги урока.
- VI. Формирование умений и навыков.
- VII. Итоги урока.
- IV. Проверочная работа.
- В а р и а н т 1
- В а р и а н т 2
- В а р и а н т 1
- В а р и а н т 2
- V. Итоги урока.
- IV. Формирование умений и навыков.
- V. Проверочная работа.
- В а р и а н т 1
- В а р и а н т 2
- VI. Итоги урока.
- У р о к 2 (53) Применение теоремы Виета и обратной ей теоремы
- V. Итоги урока.
- В а р и а н т 2
- В а р и а н т 3
- В а р и а н т 4
- У р о к 1 (55) Понятие дробного рационального уравнения
- V. Формирование умений и навыков.
- VI. Итоги урока.
- V. Итоги урока.
- IV. Итоги урока.
- V. Формирование умений и навыков.
- VI. Итоги урока.
- V. Итоги урока.
- IV. Итоги урока.
- В а р и а н т 2
- В а р и а н т 3
- В а р и а н т 4