Тема 6. «Координаты и векторы»
Студент должен:
знать:
понятие прямоугольной декартовой системы координат в пространстве;
формулы расстояния между точками с заданными координатами и координаты середины отрезка;
уравнение сферы;
определение вектора, действий над векторами;
свойства действий над векторами;
понятие коллинеарных и компланарных векторов;
уметь:
находить расстояние между точками с заданными координатами и координаты середины отрезка;
составлять уравнение сферы;
выполнять действия над векторами;
раскладывать вектор на составляющие;
вычислять длину вектора, угол между векторами;
вычислять скалярное произведение векторов.
Прямоугольная (декартова) система координат в пространстве. Формула расстояния между двумя точками. Уравнения сферы, плоскостии прямой.
Векторы. Модуль вектора. Равенство векторов. Сложение векторов. Умножение вектора на число. Разложение вектора по направлениям. Угол между двумя векторами. Проекция вектора на ось. Координаты вектора. Скалярное произведение векторов.
Использование координат и векторов при решении математических и прикладных задач.
- Содержание
- Требования к результатам обучения
- Алгебра (Развитие понятия о числе. Корни, cтепени, логарифмы. Основы тригонометрии)
- Функции (Функции, их свойства и графики)
- Начала математического анализа
- Уравнения и неравенства
- Стохастика (Элементы комбинаторики. Элементы теории вероятностей и математической статистики)
- Геометрия (Прямые, плоскости и углы в пространстве. Координаты и векторы. Многогранники, тела и поверхности вращения. Элементы вычислительной геометрии)
- Объем дисциплины и виды учебной работы
- Тематический план
- Программа курса
- Тема 1. «Развитие понятия о числе»
- Тема 2. «Корни, степени, логарифмы»
- Тема 3. «Элементы комбинаторики»
- Тема 4. «Прямые, плоскости и углы в пространстве»
- Тема 5. «Основы тригонометрии»
- Тема 6. «Координаты и векторы»
- Тема 7. «Функции, их свойства и графики»
- Тема 8. «Многогранники, тела и поверхности вращения»
- Тема 9. «Начала математического анализа»
- Тема 10. «Элементы вычислительной геометрии»
- Тема 11. «Элементы теории вероятностей и математической статистики»
- Тема 12. «Уравнения и неравенства»
- Методические рекомендации по изучению дисциплины и организации самостоятельной работы студентов
- Задания для самостоятельной работы студентов.
- Тригонометрические преобразования.
- Вероятность
- Геометрия
- Параллельность прямых в пространстве.
- Параллельность прямой и плоскости
- Параллельность двух плоскостей
- Угол между прямыми в пространстве. Перпендикулярность прямых
- Угол между прямой и плоскостью. Перпендикулярность прямой и плоскости
- Угол между плоскостями. Перпендикулярность плоскостей
- Примерные темы докладов и рефератов
- Рекомендуемая литература1
- Основная
- Дополнительная
- Справочные материалы
- Контрольные задания по темам
- (Подготовительные варианты)
- Тема 1.«Развитие понятие о числе»
- Тема 2.«Корни, степени, логарифмы»
- Тема 3.«Элементы комбинаторики»
- Тема 4.«Прямые, плоскости и углы в пространстве»
- Тема 5.«Основы тригонометрии»
- Тема 6.«Координаты и векторы»
- Тема 7.«Функции, их свойства и графики»
- Тема 8.«Многогранники и тела вращения»
- Тема 9.«Начала математического анализа»
- Тема 10.«Элементы вычислительной геометрии»
- Тема 11. «Элементы теории вероятностей и математической статистики»
- Тема 12.«Уравнения и неравенства»
- Итоговые контрольные задания
- (Подготовительные варианты)
- Итоговые контрольные задания № 1
- Итоговые контрольные задания № 2
- Приложение
- Типовые задания, соответствующие требованиям, предъявляемым к результатам обучения.
- Алгебра. Функции, уравнения и неравенства.
- Начала математического анализа
- Геометрия
- Cтохастика (комбинаторика, теория вероятностей и математическая статистика)